For Cystic Fibrosis Lung Infections, How Well Antibiotics Work May be Affected by pH, Oxygen

By Heather Buschman, PhD

People living with cystic fibrosis (CF) spend their entire lives battling chronic lung infections that are notoriously resistant to antibiotic therapy. Yet a one-size-fits all approach to wiping out the offending bacterium may not be the best approach for all patients with the disease, according to a new study by researchers at University of California San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences. Continue reading For Cystic Fibrosis Lung Infections, How Well Antibiotics Work May be Affected by pH, Oxygen

Newfound airway cells may breathe life into tackling cystic fibrosis

By Aimee Cunningham

Meet the ionocyte. This newly discovered cell may be the star of future cystic fibrosis therapies. Researchers have found that the gene tied to the disease is very active in the cells, which line the air passages of the lungs.

While the cells are rare, making up only 1 to 2 percent of cells that line the airways, they seem to play an outsized role in keeping lungs clear. The identification of the ionocyte “provides key information for targeting treatments,” says medical geneticist Garry Cutting of Johns Hopkins School of Medicine in Baltimore, who was not involved in the research. Two teams, working independently, each describe the new cell online August 1 in Nature.

The ionocyte shares its name with similar cells found in fish gills and frog skin. This type of cell regulates fluid movement at surfaces — skin, gills, airways — where air and water meet. In people, special proteins that tunnel across cell membranes lining the airways allow chloride ions (half of what makes salt) to move into the airway. This causes water to move into the airway through a different channel to moisten mucus along the lining, which helps it remove bacteria and inhaled particles from the body.

The tunnel protein that allows chloride ions through is made by a gene called CFTR. In cystic fibrosis patients, that gene is flawed. Airways can’t regulate water movement properly and get clogged with thick mucus that traps bacteria and leads to persistent infections and lung damage. The genetic disease affects at least 70,000 people worldwide, according to the Cystic Fibrosis Foundation in Bethesda, Md.

Researchers had suspected CFTR was most active in ciliated cells — cells with brushlike projections that work along with the mucus in airways to move invaders out. But the new work found very little gene activity in those cells, compared with the ionocytes.

In experiments with laboratory samples of mouse cells from the airway lining, cell biologist Jayaraj Rajagopal of Massachusetts General Hospital in Boston and his colleagues found that the gene was very active in ionocytes: out of all the instructions for building the tunnels detected in the cells, 54 percent came from ionocytes. Aron Jaffe, a respiratory disease researcher at Novartis Institutes for Biomedical Research in Cambridge, Mass., and his colleagues reported that, in laboratory samples of human airways cells, ionocytes were the source of 60 percent of the activity of the tunnels.

The discovery of the new cells raises a lot of questions. Jaffe wonders where ionocytes are positioned in the lining of the airways, and how that placement supports the coordination of water movement and mucus secretion by other cells. “You can imagine the distribution [of ionocytes] is really important,” he says.

A question Rajagopal has: “How does a rare cell type do all of this work?” In fish and frogs, ionocytes are loaded with mitochondria, the so-called cellular energy factories, he notes. Maybe that will be true for human ionocytes, too, giving them lots of energy to do the lion’s share of regulating the movement of water.

Both researchers say the ionocyte’s discovery should lead to a better understanding of cystic fibrosis. “It will let us think about creative new ways to approach the disease,” Rajagopal says.

Original article here.

Toothpaste ingredient may bust up cystic fibrosis biofilms

By Chris Waters and Sarina Gleason

A common antibacterial substance in toothpaste may combat life-threatening diseases such as cystic fibrosis when combined with an with an FDA-approved drug, researchers report.

Researchers have found that when triclosan, a substance that reduces or prevents bacteria from growing, combines with an antibiotic called tobramycin, it kills the cells that protect the CF bacteria, known as Pseudomonas aeruginosa, by up to 99.9 percent.

CF is a common genetic disease with one in every 2,500 to 3,500 people diagnosed with it at an early age. It results in a thick mucus in the lungs, which becomes a magnet for bacteria.

These bacteria are notoriously difficult to kill because a slimy barrier known as a biofilm, which allows the disease to thrive even when treated with antibiotics, protects them.

“The problem that we’re really tackling is finding ways to kill these biofilms,” says Chris Waters, lead author of the study and a microbiology professor at Michigan State University.

According to Waters, there are many common biofilm-related infections that people get, including ear infections and swollen, painful gums caused by gingivitis. But more serious, potentially fatal diseases join the ranks of CF including endocarditis, or inflammation of the heart, as well as infections from artificial hip and pacemaker implants.

Waters and his coauthors grew 6,000 biofilms in petri dishes, added in tobramycin along with many different compounds, to see what worked better at killing the bacteria. Twenty-five potential compounds were effective, but one stood out.

“It’s well known that triclosan, when used by itself, isn’t effective at killing Pseudomonas aeruginosa,” says coauthor Alessandra Hunt, a postdoctoral associate of microbiology and molecular genetics. “But when I saw it listed as a possible compound to use with tobramycin, I was intrigued. We found triclosan was the one that worked every time.”

Triclosan has been used for more than 40 years in soaps, makeup, and other commercial products because of its antibacterial properties. Recently, the FDA ruled to limit its use in soaps and hand sanitizers due to insufficient data on its increased effectiveness and concern about overuse. Clear evidence has shown, though, that its use in toothpaste is safe and highly effective in fighting gingivitis, and it is still approved for use.

“Limiting its use is the right thing to do,” says coauthor Michael Maiden, a graduate student in medicine. “The key is to avoid creating resistance to a substance so when it’s found in numerous products, the chances of that happening increase.”

Tobramycin is currently the most widely used treatment for CF, but it typically doesn’t clear the lungs of infection, Waters says. Patients typically inhale the drug, yet still find themselves chronically infected their whole lives, eventually needing a lung transplant.

“Most transplants aren’t a viable option though for these patients and those who do have a transplant see a 50 percent failure rate within five years,” he says. “The other issue is that tobramycin can be toxic itself.” Known side effects from the drug include kidney toxicity and hearing loss.

“Our triclosan finding gives doctors another potential option and allows them to use significantly less of the tobramycin in treatment, potentially reducing its use by 100 times,” Hunt says.

Within the next year, Waters and his colleagues will begin testing the effectiveness of the combination therapy on mice with hopes of it heading to a human trial soon after since both drugs are already FDA approved.

Just brushing your teeth with toothpaste that has triclosan won’t help to treat lung infections though, Maiden says.

“We’re working to get this potential therapy approved so we can provide a new treatment option for CF patients, as well as treat other biofilm infections that are now untreatable. We think this can save lives,” he says.

The research appears in the journal Antimicrobial Agents and Chemotherapy.

The National Institutes of Health, Cystic Fibrosis Foundation, and Hunt for a Cure in Grand Rapids, Michigan funded the research.

Source: Michigan State University

Defining chronic Pseudomonas aeruginosa infection in cystic fibrosis

By Valerie Waters and Keith Grimwood

Cystic fibrosis (CF) is a genetic, multi-system disease due to mutations in the cystic fibrosis conductance regulator (CFTR) gene, leading to ineffective anion channel activity [1]. The resulting impaired mucociliary clearance permits initial acquisition of Pseudomonas aeruginosa and, if untreated, the establishment of persistent infection in the CF airways. It has long been recognized that chronic infection, often characterized by a mucoid P. aeruginosa phenotype, is associated with more rapid lung function decline and earlier death in individuals with CF [[2], [3], [4]]. Defining chronic P. aeruginosa infection is, therefore, an important step in identifying CF patients most at risk of lung disease progression. Traditionally, the Leed’s criteria has been used to define chronicity (as having >50% of sputum cultures being P. aeruginosa positive in the preceding 12 months), as it is the only clinically validated definition [5]. However, the Leed’s criteria are difficult to implement in young children unable to provide sputum and further limited by the required number of sputum samples and follow-up time [6].

In this issue of the Journal, studies by Heltshe et al. and Boutin et al. aim to re-define what chronic P. aeruginosa infection means in CF. In a retrospective cohort study using data from the US CF Foundation Patient Registry, Heltshe et al. followed close to 6000 early-diagnosed CF children for approximately 6 years [7]. Two-thirds acquired P. aeruginosa infection and of those, 6% had an initial mucoid phenotype. Furthermore, the majority (87%) of children who developed mucoid infection did so before meeting the definition of chronic infection (at least 3 yearly quarters P. aeruginosa positive in the preceding year). Initial P. aeruginosa infection with a mucoid phenotype has been previously described and is a recognized risk factor for failure of antimicrobial eradication therapy [[8], [9], [10]]. Whether this initial acquisition of a mucoid phenotype represents prior adaptation of P. aeruginosa in the CF host (either undetected or transmitted from a patient with chronic infection) or simply infection with an environmental strain particularly well-suited to the CF airways, is as of yet unknown [11]. It is clear, though, that mucoid P. aeruginosa does have an adaptive advantage in early CF infection as mucoidy was associated with an almost three-fold increased risk of transition to chronic infection in this current study. Despite the presence of this risk factor, however, only 13% of P. aeruginosa infected patients went on to develop chronic infection. Although Heltshe et al. did not provide details as to eradication strategies used in this cohort, this low incidence of persistent infection does speak to the overall effectiveness of current antimicrobial treatment for early P. aeruginosa infection.

Boutin et al. took their investigation a step further by using molecular methods, specifically quantitative polymerase chain reaction (qPCR), to define chronic P. aeruginosa infection [12]. In their study, patients with chronic infection had significantly higher levels of P. aeruginosa as measured by qPCR compared to those with intermittent infection. A single P. aeruginosa qPCR measurement in sputum had a sensitivity of 84% (with a specificity of 85%) in detecting chronic infection using a threshold of 103.4 colony forming units (CFU)/ml. A single sputum PCR measure had the advantage of not requiring 12 months of culture results as per the Leed’s criteria [5]. Furthermore, in their small study sample size, PCR was more discriminatory than mucoidy status in predicting chronicity, not surprisingly, given that alginate production (conferring mucoidy) is only one of several virulence factors contributing to the establishment of persistent P. aeruginosa infection in CF [13]. When used in throat swab samples, qPCR had a considerably lower sensitivity (82%) and specificity (56%) in detecting chronic infection, likely due in part to the lower bacterial burden observed in this specimen, compared to sputum. The low specificity of PCR in this setting (positive PCR, negative culture) may reflect the fact that a molecular signal may precede culture positivity. Early detection of P. aeruginosa infection, before culture conversion, in CF patients was originally suggested decades ago using serologic and, more recently, molecular methods [[14], [15], [16]]. Serology, however, has proven disappointing at identifying early P. aeruginosa infection [17]. Nevertheless, early detection may still be possible using highly-sensitive PCR techniques for identifying lower airway P. aeruginosa infection in a young, non-expectorating child. In the study by Boutin et al., P. aeruginosa detection in throat swabs by PCR alone was linked to a positive culture in sputum in three-quarters of cases. Previous studies comparing oropharyngeal cultures to bronchoalveolar lavage (BAL) cultures in children with CF demonstrated that oropharyngeal cultures had a positive predictive value of only 44%, but a negative predictive value of 95% in diagnosing lower airway P. aeruginosa infection [18]. Performing P. aeruginosa qPCR on culture negative throat swabs may further improve the diagnosis of lower airway infection in young children with CF who are unable to produce sputum, but this approach will still need to be validated by comparative studies employing BAL fluid samples. Unfortunately, using confirmatory induced sputum samples as suggested by Boutin et al., may produce unreliable results as these specimens are poor predictors of lower airway pathogens cultured from BAL specimens in young children with CF [19]. Finally, it is yet to be determined whether an earlier diagnosis of P. aeruginosa infection leads to improved eradication success rates and superior clinical outcomes.

In summary, the recent studies by Heltshe et al. and Boutin et al. further our understanding of how chronic P. aeruginosa infection develops in CF and how to better recognize it [7,12]. Ultimately, prevention of chronic P. aeruginosa infection and its deleterious effects on lung function and survival is the goal.

Original article in Journal of Cystic Fibrosis here.

Potential Therapy for Infections in CF Gets Patent

AB569Arch Biopartners’ treatment candidate for bacterial infections in patients with cystic fibrosis, chronic obstructive pulmonary disease (COPD), and other respiratory conditions, has received a U.S. patent.

The U.S. Patent and Trademark Office issued patent 9,925,206 to the University of Cincinnati, which granted Arch Biopartners an exclusive commercial license on all patents related to AB569. The inventor is Daniel Hassett, PhD, a principal scientist at Arch and professor at the University of Cincinnati College Of Medicine.

“This patent issuance, which protects the composition of AB569, gives Arch a stronger commercial position to pursue treating not just CF patients, but also the millions of other patients that have chronic antibiotic resistant lung infections including those with COPD,” Richard Muruve, CEO of Arch, said in a press release. “It also opens the door for Arch to develop treatments for many other indications where antibiotic resistance is a problem, such as urinary tract infections and wound care.”

Bacterial infections in the lungs are a serious problem in patients with CF, COPD, or ventilator-associated pneumonia. Cystic fibrosis patients are susceptible to bacterial respiratory infections as a result of abnormal mucus production in the lungs and airways.

In particular, the bacterium Pseudomonas aeruginosa (P. aeruginosa) affects most adult CF patients and 40 percent of CF children ages 6 to 10. The mucoid form of P. aeruginosa is highly resistant to conventional antibiotics and immune-mediated killing. It causes a rapid decline in lung function and a poor overall clinical prognosis.

Antibiotic use in the treatment of CF and COPD patients with chronic bacterial respiratory infections is increasing, which correlates with a higher prevalence of antibiotic-resistant strains.

AB569 is a non-antibiotic therapy made of sodium nitrite and ethylenediaminetetraacetic acid (EDTA), two compounds approved by the U.S. Food and Drug Administration (FDA) for human use. The treatment has a different mechanism of action from antibiotics that may increase effectiveness, Arch believes.

“AB569 has two active ingredients that produce a dramatic and synergistic effect at killing many antibiotic resistant bacteria including Pseudomonas aeruginosa (P. aeruginosa), which commonly causes severe chronic infections in the lungs of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients,” Hassett said. “AB569 has the potential to make a significant medical impact on treating infection where traditional antibiotics fail.”

In preclinical experiments, the therapy showed significant ability to kill several types of Gram-negative and Gram-positive bacteria.

The safety and pharmacokinetics of a single administration of nebulized AB569 are now being evaluated in a Phase 1 clinical trial with up to 25 healthy volunteers at the Cincinnati Veterans Affairs Medical Center (CVAMC). Pharmacokinetics refers to how a drug is absorbed, distributed, metabolized, and expelled by the body. Enrollment of volunteers started in February.

If the Phase 1 study provides positive results, the company plans to start a Phase 2 trial to test the effectiveness of AB569 in the treatment of chronic lung infections caused by P. aeruginosa and other bacterial pathogens in CF and/or COPD patients.

AB569 previously received orphan drug status from the FDA for the treatment of CF patients infected with P. aeruginosa, and orphan medicinal product designation from the European Medicines Agency.

For original article, click here.

Antibiotic resistance evolution of Pseudomonas aeruginosain cystic fibrosis patients

By Francesca Lucca, Margherita Guarnieri, Mirco Ros, Giovanni Muffato, Roberto Rigoli, and Liviana Da Dalt

Below is a study hoping to define and answer the questions of Pseudomonas aeruginosain, its evolution and the resistance from different antibiotics. The study took place between 2010-2013. Though the study may have some time clauses I believe there are some strong findings for the CF community moving forward.
_________________________________________________________________________________

Introduction

Pseudomonas aeruginosa is the predominant pathogen responsible of chronic colonization of the airways in cystic fibrosis (CF) patients. There are few European data about antibiotic susceptibility evolution of P aeruginosa in CF patients.

Objectives

The aim of this study is to evaluate the evolution of antibiotic resistance in the period 2010‐2013 in CF patients chronically colonized by P aeruginosa and to highlight the characteristics of this evolution in patients younger than 20 years.

Methods

Clinical and microbiological data were extracted from two electronic databases and analyzed. Antibiotic resistance was defined according to European Committee of Antimicrobial Susceptibility Testing for levofloxacin, ciprofloxacin, meropenem, amikacin and ceftazidime. The between‐group comparison was drawn with the Chi‐square test for proportions, with the T‐test for unpaired samples for normally distributed data and with Mann‐Whitney test for non‐normally distributed data. Significancy was defined by P < .05.

Results

Fifty‐seven CF patients, including thirteen subjects aged less than 20 years, were enrolled. P.. aeruginosa antibiotic sensitivity decreased significantly for fluoroquinolones, mainly in patients aged <20 years, while it increased for amikacin and colistin. The analysis of minimum inhibitory concentration confirmed these trends. In pediatric patients treated with more than three antibiotic cycles per year, greater resistance was found, except for amikacin and colistin.

Conclusion

An evolution in P aeruginosa antibiotic resistances is observed in the 4‐year period studied. Responsible and informed use of antibiotics is mandatory in CF.
___________________________________________________________________________________
Read the whole clinical journal here. 

Antibiotic resistance evolution of Pseudomonas aeruginosa in cystic fibrosis patients (2010‐2013) Francesca Lucca,Margherita Guarnieri,Mirco Ros,Giovanna Muffato,Roberto Rigoli,Liviana Da Dalt. First published: 1 April 2018. https://doi.org/10.1111/crj.12787

Potential Nitric Oxide Treatment for Resistant Bacterial Infections Gets Patent

A possible inhalable treatment for antibiotic-resistant bacterial infections in people with cystic fibrosis due to Pseudomonas aeruginosa now has a U.S. patent and is being readied for a first clinical trial, Novoclem Therapeutics announced.

The patent (No. 9,850,322) was issued to the University of North Carolina (UNC) at Chapel Hill where the potential therapy, BIOC51, was discovered, and covers a technology known as water-soluble polyglucosamine compositions that release nitric oxideContinue reading Potential Nitric Oxide Treatment for Resistant Bacterial Infections Gets Patent

Supercharged antibiotics could turn tide against superbugs

An old drug supercharged by University of Queensland researchers has emerged as a new antibiotic that could destroy some of the world’s most dangerous superbugs.

The supercharge technique , led by Dr Mark Blaskovich and Professor Matt Cooper from UQ’s Institute for Molecular Bioscience (IMB), potentially could revitalise other antibiotics. Continue reading Supercharged antibiotics could turn tide against superbugs

Cancer gene plays key role in cystic fibrosis lung infections

PTEN is best known as a tumor suppressor, a type of protein that protects cells from growing uncontrollably and becoming cancerous. But according to a new study from Columbia University Medical Center (CUMC), PTEN has a second, previously unknown talent: working with another protein, CFTR, it also keeps lung tissue free and clear of potentially dangerous infections.

The findings, published in Immunity, explain why people with cystic  are particularly prone to respiratory infections—and suggest a new approach to treatment.

A quarter-century ago, researchers discovered that cystic fibrosis is caused by mutations in the CFTR gene, which makes an eponymous protein that transports chloride ions in and out of the cell. Without ion transport, mucus in the lung becomes thicker and stickier and traps bacteria—especially Pseudomonas—in the lung. The trapped bacteria exacerbate the body’s inflammatory response, leading to persistent, debilitating infections.

But newer research suggests CFTR mutations also encourage infections through a completely different manner.

“Recent findings suggested that  with CFTR mutations have a weaker response to bacteria, reducing their ability to clear infections and augmenting inflammation,” said lead author Sebastián A. Riquelme, PhD, a postdoctoral fellow at CUMC. “This was interesting because it pointed to a parallel deregulated immune mechanism that contributes to airway destruction, beyond CFTR’s effect on mucus.”

That’s where PTEN comes into play. “We had no idea that PTEN was involved in cystic fibrosis,” said study leader Alice Prince, MD, professor of pediatrics (in pharmacology). “We were studying mice that lack a form of PTEN and noticed that they had a severe inflammatory response to Pseudomonas and diminished clearance that looked a lot like what we see in patients with cystic fibrosis.”

Delving deeper, the CUMC team discovered that when PTEN is located on the surface of lung and immune cells, it helps clear Pseudomonas bacteria and keeps the inflammatory response in check. But PTEN can do this only when it’s attached to CFTR.

And in most cases of cystic fibrosis, little CFTR finds it way to the cell surface. As a result, the duo fail to connect, and Pseudomonas run wild.

As it happens, the latest generation of cystic fibrosis drugs push mutated CFTR to the cell surface, with the aim of improving chloride channel function and reducing a buildup of mucus. The new findings suggest that it might be beneficial to coax nonfunctional CFTR to the surface as well, since even abnormal CFTR can work with PTEN to fight infections, according to the researchers.

“Another idea is to find drugs that improve PTEN membrane anti-inflammatory activity directly,” said Dr. Riquelme. “There are several PTEN promotors under investigation as cancer treatments that might prove useful in cystic fibrosis.”

The study also raises the possibility that PTEN might have something to do with the increased risk of gastrointestinal cancer in . “With better clinical care, these patients are living much longer, and we’re seeing a rise in gastrointestinal cancers,” said Dr. Prince. “Some studies suggest that CFTR may be a tumor suppressor. Our work offers an alternative hypothesis, where CFTR mutations and lack of its partner, PTEN, might be driving this cancer in patients with .”

The paper is titled, “Cystic fibrosis transmembrane conductance regulator attaches tumor suppressor PTEN to the membrane and promotes anti Pseudomonas aeruginosa immunity.”

For journal article click here:

http://www.cell.com/immunity/fulltext/S1074-7613(17)30487-9

Why Aspiration Is a Silent, Hidden Danger for Cystic Fibrosis Patients

Dr. Gwen A. Huitt is an infectious disease doctor at National Jewish Health with a special interest in mycobacteria, bronchiectasis, and cystic fibrosis. Here, she talks to us about the hidden dangers of a major medical issue she feels doesn’t receive the attention it needs in the CF community — aspiration.

Q: What is aspiration? What is silent aspiration?

A: Aspiration is defined as any liquid, substance, or foreign body that gains access (below the vocal cords) to the airways. Many times when we have an overt aspiration, a cough is triggered. Think, “something went down the wrong pipe.” This may occur when folks drink fluids too quickly, toss their head back to take pills, etc. A small amount of liquid trickles down the windpipe, irritating it and causing a cough. Additionally, overt aspiration may occur in some folks with neurologic disorders that impair the ability to swallow appropriately (think stroke, Parkinson’s disease, etc.).

Silent aspiration may also occur in many neuromuscular disorders as well in “normal” hosts. This is where my patient population lives for the most part. There are two distinct situations that may occur. The first would be that when we take a drink, some small amounts of liquid “pools” in a recess around the vocal cords and then little amounts can trickle over the vocal cords down into the airway, but it does not trigger a cough or any sensation that something has just gained access to the airway. The second scenario is when we silently or overtly reflux up liquids from the stomach or esophagus and they reach high enough in the esophagus that they then trickle into the airway.

Q: What contributes most to aspiration?

A: For our patient population, we believe that overdistending the stomach with too much liquid, bending forward or lying too flat on your back, stomach, or on your right side contributes to most of our silent reflux episodes.

Q: What are the dangers of aspiration for a CF patient?

A: The dangers of aspiration for CF or non-CF patients are that you are sending not only germs such as pseudomonas or non-tuberculosis mycobacteria (NTM) into the airway that contribute to infection, but also that digestive enzymes and acids cause significant inflammation in the airways. This situation worsens inflammation and infection in the vulnerable airway.

MORE: Three travel considerations if you have a lung disease

Q: What are telltale signs of aspiration damage in the lungs?

A: We know that aspiration can lead to bronchiectasis. Additionally, by looking at microbiology of the sputum, we may find many organisms that are predominantly only supposed to be found in the digestive tract. When we see certain organisms such as citrobacter or E. coli we know for sure that these organisms were translocated from the digestive tract to the airway via aspiration. In all likelihood, other organisms such as pseudomonas, NTM, and Klebsiella are also primarily acquired in the airway via this mechanism. Much more research needs to be done in this area though.

Q: What is something about aspiration you think people would be surprised to learn?

A: That so much of aspiration is silent and we currently don’t have any good test to assess for intermittent reflux that may lead to aspiration. Also, there is no medication that stops reflux (which then leads to aspiration). Medications such as PPI (i.e., Nexium) or H2 blocker (i.e., Zantac) medications suppress acid production, which certainly can help with heartburn or cough, but they do not stop the physical action of reflux.

Q: Should reflux medication be a last resort or is it enough of a danger that it should be used as soon as a patient begins exhibiting reflux/aspiration symptoms?

A: As I said earlier, we currently have no medication to stop the action of reflux. In many ways, taking these medications may actually make reflux worse because you don’t feel heartburn symptoms but most certainly are still refluxing. Also, part of what PPIs and H2 blockers do is lower acid. Part of the action of acid in digestive juices is to kill some proportion of germs that we swallow. If you are still refluxing (while taking PPIs) and you then aspirate some of this digestive “soup,” you are actually aspirating more germs per aliquot of gastric contents. [But] you should definitely take a medication to help with heartburn symptoms or if you have been seen by a [gastro doctor] and they have diagnosed ulcer disease or Barrett’s esophagus.

Q: Do you believe aspiration is taken as seriously in the CF health care setting as it should be?

A: No, I do not think that aspiration is taken seriously at all in the CF community. Nor is it taken as seriously in the non-CF world.

Original article found at: https://cysticfibrosisnewstoday.com/2017/12/14/aspiration-risks/?utm_source=Cystic+Fibrosis&utm_campaign=a772c5a83f-RSS_THURSDAY_EMAIL_CAMPAIGN&utm_medium=email&utm_term=0_b075749015-a772c5a83f-71418393