Be Involved in a Meeting with FDA on CF!

On October 29th, individuals with cystic fibrosis and their families will have a unique and pivotal opportunity to share their experiences with representatives of the FDA during a live-streamed interactive meeting.

CFRI is very honored to host an Externally-Led Patient-Focused Drug Development Meeting on Cystic Fibrosis with the FDA on Monday, October 29th. This is an amazing and singular opportunity to share the patient experience with FDA representatives. They want and need to know the impacts and burden of the disease, your hopes for new therapies, and what you are willing to go through to find these new drugs.

PLEASE register to participate in this free live-streamed meeting! We need your input and participation You will have the opportunity to participate in live polling, and to email and call in to share your experiences. Those who do not have CF/a family member with CF should also feel free to join us.

You can register and log in for any or all of the day’s presentations and discussions. The day begins at 9:45 am. Please note: all times listed are East Coast time, as the meeting will be held at the College Park Marriott Hotel and Conference Center in Hyattsville, Maryland.

Here is the link:  http://cfri.org/advocacy/advocacy-events/

Speakers/Panelists
Jen Caruso
Lise-Courtney D’Amico
Boomer Esiason
Gunnar Esiason
Joseph Klausing, JD
Emily Kramer-Golinkoff
Robert Lim, MD
Jane Mitchell
Anna Payne
Kat Quinn Porco, MS
Tejashri Purohit-Sheth, MD
Arek Puzia, CPA, MBA
Emily Schaller
Isa Stenzel Byrnes, LCSW, MPH
Ahmet Uluer, DO, MPH
James Valentine, JD, MHS

Thank you for having an impact upon those who are assessing the safety and efficacy of new CF therapies, and making recommendations for their movement to market. 

Your voices matter!

I’m Drowning – A researcher-patient’s plea for broader inclusion in cystic fibrosis trials

By: Ella Balasa

I’ve always known cystic fibrosis (CF) is a progressive disease; it destroys lung cells, tightens the small airways in the bottom of my chest, and each day takes me closer to the time when it will have ravaged my lungs. I had never really questioned if there was some way this process could be altered. I accepted that it couldn’t.

Recently, however, this has changed. The epicenter of new CF research is the development of medications that will slow, stop, and hopefully even reverse the effects and damage that CF inflicts on the body. The possibility of the cells in my lungs functioning to their full potential — with CF transmembrane conductance regulator protein function restored and working correctly, expelling chloride out of my cells, hydrating the surface of my lungs, and halting the thick sticky mucus that has caused my airways to be enveloped in a suffocating cloak for all these years — is like a feeling of being rescued when you are drowning.

Unfortunately, I am still drowning.

“I’m very sorry, Ms. Balasa, but you will not be able to be a participant in this clinical trial.” This was the response I received during one of my searches for these drug trials. Excited by the possibility of participating, finding one recruiting at my local adult clinic, I reached out to study coordinators and was informed that I met all but one criterion to participate in the studies. This specific criterion has prevented me from prior trial participation involving other investigational medications treating the symptoms of CF, including anti-infectives and anti-inflammatories.

Most CF studies, including phase I, II, and III trials, require a lung function minimum of at least 40% FEV1 (forced expiratory volume in one second). My FEV1 is 25%, so I am excluded from these trials. Many patients face a similar situation. The 40% threshold biases samples toward a young patient population, as this degenerative condition causes steadily decreasing lung function with time. Furthermore, as CF treatment has rapidly progressed and increased patients’ life expectancies, there are now more adults with CF in the U.S. than children, according to the CF Foundation Patient Registry.

As a patient who works in the science field, I started to ask myself: Where does that number come from? Should this one variable be such a deciding factor? Are we getting comprehensive results from these studies if a subset of patients is omitted? Are investigators using eligibility criteria from a prior study without determining whether the exclusions are scientifically justifiable?

To continue reading, please visit MedPage Today.

Telavancin Promising Potential Treatment Option for MRSA in Cystic Fibrosis Patients

By Kristi Rosa

Responsible for several issues ranging from skin infections and sepsis to pneumonia and bloodstream infections, methicillin-resistant Staphylococcus aureus continues to plague patients in the health care and community setting, as well as the providers who treat them.

When acquired in patients with cystic fibrosis, clinical outcomes are known to be even worse, affecting several organs—primarily the lungs—and resulting in an increased rate of declined respiratory function as well as infections that can have severe, and sometimes deadly, consequences.

Now, however, for the first time, investigators have found that telavancin—a drug that is currently used to treat skin infections and hospital-acquired pneumonia—has potent in vitro activity and low resistance development potential when used against S aureus isolates in patients with cystic fibrosis, making it a promising potential treatment option for this population.

“Telavancin (TLV) is a lipoglycopeptide antibiotic approved by the US Food and Drug Administration in 2009 for the treatment of complicated skin and skin structure infections and in 2013 for the treatment of cases of nosocomial pneumonia, however its application for the treatment of CF-MRSA pneumonia infections was not known, so our studies are contributing to extending the application of TLV for CF treatment,” Adriana E. Rosato, PhD, associate professor in the department of Pathology and Genomic Medicine at Houston Methodist Research Institute told Contagion®. “We were also inspired by the fact that CF patients have a short life time—until 40 to 50 [years]—so our priority is to contribute to better treatment in this patient population.”

Dr. Rosato and her team hypothesized that TLV might be a promising treatment option for CF-patient-derived MRSA and MSSA infections, as in vitro studies have shown that TLV has activity against MRSA.

To prove this, the investigators screened a total of 333 strains of CF patient-derived S aureus of the wild-type or small-colony-variant phenotype, collected from both adults and children at 3 different cystic fibrosis centers: Houston Methodist Research Institute, UW Health and the Center for Global Infectious Disease Research. TLV was found to display activity against all 333 strains collected.

When testing the activity of the drug against 23 MRSA strains, the investigators observed intermediate resistance to ceftaroline (CPT)—a new beta-lactam antibiotic that targets PBP 2a in MRSA—in 20 of the strains, and high-level resistance to CPT in 3 of the strains. The authors note that although high levels of resistance to CPT is rare, intermediate resistance is more common in patients who have chronic infections.

“Among all strains, the TLV MIC90 was 0.06 mg/liter, i.e. 8-fold lower than the daptomycin (DAP) and CPT MIC90 and 25-fold lower than the linezolid (LZD) and vancomycin (VAN) MIC90,” the authors write.

Using time-kill experiments, the investigators assessed the in vitro effectiveness of TLV compared with DAP, VAN, and CPT. They found that TLV showed activity against all tested strains and displayed rapid bactericidal activity as well. The activity profile for the drug at a free serum concentration of 8 mg/liter showed that TLV performed better than VAN (16 mg/liter), LZD (10.4 mg/liter), and CPT (16 mg/liter).

The investigators also set out to determine the fate of mutation selection that could be projected by the potential prolonged use of TLV in patients with cystic fibrosis. To do this they looked at 3 specific strains: AMT 0114-48, WIS 664, and TMH 5007. They found that due to the ease of mutation selection which had been noted in control strains, TLV mutant resistance is independent of the CF patient background of the strains.

“We demonstrated that TLV has bactericidal activity against the S aureus strains tested, including those against which CPT and LZD displayed reduced activity, which might provide TLV a significant advantage over the drugs currently used to eradicate those strains and prevent future exacerbations,” the study authors write.

A clinical trial is currently underway to assess the pharmacokinetic profile of TLV in patients with cystic fibrosis, who usually need dose adjustment because of an increase in the volume of distribution and clearance.

“[The next step for our research is] to perform in-vivo analyses studies that could lead to translational application/clinical trial,” Dr. Rosato added. “However, we are limited in research funds to continue our investigations.”

Original article here.

Machine learning to help cystic fibrosis decision-making

By James Hayes

New research claims to have demonstrated that machine learning techniques can predict with a 35% improvement in accuracy – in comparison to existing statistical methods – whether a cystic fibrosis patient should be referred for a lung transplant.

The research, led by Professor Mihaela van der Schaar of the Alan Turing Institute at the University of Oxford, has been generated through a partnership between The Alan Turing Institute and charity the Cystic Fibrosis Trust. Continue reading Machine learning to help cystic fibrosis decision-making

Patient-reported outcomes: Time for a new approach?

By Janice Abbott

Patient-reported outcome (PRO) measurement (e.g. health-related quality of life questionnaires, symptom diaries) can provide a standardized, valid and reliable way of gaining the patients’ perspective on ‘how they are’ or the benefits and limitations of a specific intervention. The insights that patients have concerning their health are important given that aspects of patient-reported quality of life are independent predictors of survival in cystic fibrosis (CF) [1]. Regulatory authorities require the inclusion of PROs in clinical trials as an additional outcome parameter and PRO information is becoming important in labelling claims. It is noteworthy that the top 10 research questions, reached by global consensus of patient and healthcare providers, all require the inclusion of CF-specific PROs to achieve meaningful answers [2]. This represents a significant paradigm shift but capturing data that matters to patients, families and clinicians is challenging. Two of the persistent challenges in CF PRO measurement are a) the development and use of technologies to enable efficient administration, accurate scoring, and the correct interpretation of data and b) being able to accurately measure PROs (or parental proxy assessment) across the entire CF lifespan. These important issues are considered by two papers in this issue of the Journal of Cystic Fibrosis [34].

PRO measurement largely remains a research endeavour with little uptake in clinical practice. Administering, scoring and interpreting PROs in a busy clinic is difficult. It requires staff time and expertise and the results are not instantly accessible to steer a discussion with the patient or to aid clinical decision making. Paper-based data collection suffers from missing, unreadable data that is prone to scoring/mathematical error. The development of electronic PRO (ePRO) technologies is immensely important in clinical practice and for endpoint assessment in clinical trials. It is a cost-saving, patient-friendly approach to PRO assessment: data collection can occur in clinic, the patient’s home, workplace or school. Results can be added to a patient’s electronic medical file, alerts triggered by problematic scores and clinicians can track patient/parent-reported symptom/event data over time. Importantly, electronic data capture enhances the integrity and accuracy of the data, makes it logistically easier to collect repeated assessments (daily or at several points over a trial), and is preferred over paper-based data collection by the US Food and Drug Administration (FDA).

There is growing evidence that paper and electronic versions of PROs typically provide comparable data but this requires psychometric evaluation if transferring an original paper-based questionnaire to an electronic mode of administration. Solé and colleagues have demonstrated measurement equivalence with paper and electronic administrations of the Cystic Fibrosis Questionnaire-Revised (CFQ-R teen/adult version) [3]. The e-CFQ-R web version is linked to an online database that can be adapted for any electronic devise (smartphone, tablet, computer). Immediately the patient completes the questionnaire, results are sent to the healthcare team and the data are saved in a centralized, protected database. Real-time patient-reported data are available to the clinician as an adjunct to clinical data. Access to the English and Spanish versions are by independent web addresses provided in the paper. Ultimately, the integration of PRO data within electronic care records as developed by Peckham et al. [5], or in CF patient registries would enable efficient patient care and longitudinal research endeavours.

There is a lack of PROs that can be used as endpoints in early intervention studies in CF. Such instruments are time-consuming and painstakingly difficult to develop so the research of Edwards et al. reporting on the initial development of a CF-specific, parent-reported instrument for children 0–11 years is welcome [4]. The need for an effective way of data collection is also considered. The instrument takes the form of an electronic (web-based data capture), observational sign/symptom diary containing 17 respiratory and activity signs that parents report the presence or absence of. Results suggest that children aged 7 to 11 years are best reporting for themselves, therefore observational reporting by parents should focus on young children aged 0 to 6 years. Considerable evaluation has yet to determine the final instrument but the development of the scale follows FDA guidance enabling its acceptance as a clinical trial endpoint in infants and young children with CF.

Over the last twenty years we have learned a great deal about measuring patient-reported outcomes in CF, and there are many pitfalls when employing PROs in CF trials [6]. They are typically secondary endpoints and the trial is not powered on them, often making it difficult to draw valid inferences about treatments. However, there are trials that have collected patient-reported respiratory symptom data as the primary endpoint [78], employing the only CFQ-R subscale that has been approved by the FDA for use as an endpoint. Scientific, regulatory and pragmatic factors are driving the shift towards ePRO data collection. The development of ePROs is not trivial, yet they are fast becoming the ‘gold standard’ for PRO data capture in clinical trials. The challenge now is to develop CF-specific, lifespan PROs, utilising new technologies that can deliver real-time, high-quality PRO information. They also need to be acceptable to the regulatory bodies to aid their decisions on cost-effectiveness and ensure the appropriate commissioning of new medicines to improve the lives of people with CF and their families.

Original article with references here.

Cystic Fibrosis Podcast 192 Emily’s Entourage

In the latest Cystic Fibrosis Podcast, Jerry speaks with Emily Kramer-Golinkoff about the role of a patient advocate organization in driving drug development in rare disease.
Emily, a 33-year-old who has a nonsense mutation of CF, is a co-founder of Emily’s Entourage, a 501 3(c) that’s goal is to accelerate research for new treatments and a cure for CF. She is an internationally recognized patient advocate and speaker, has a Master’s degree in Bioethics and is certified in Clinical Ethics Mediation, was named “Champion of Change” by President Obama’s Precision Medicine Initiative, and has been featured by CNN.com, Time.com, AOL.com, People.com, and more for her work with her charity.

Continue reading Cystic Fibrosis Podcast 192 Emily’s Entourage

Newfound airway cells may breathe life into tackling cystic fibrosis

By Aimee Cunningham

Meet the ionocyte. This newly discovered cell may be the star of future cystic fibrosis therapies. Researchers have found that the gene tied to the disease is very active in the cells, which line the air passages of the lungs.

While the cells are rare, making up only 1 to 2 percent of cells that line the airways, they seem to play an outsized role in keeping lungs clear. The identification of the ionocyte “provides key information for targeting treatments,” says medical geneticist Garry Cutting of Johns Hopkins School of Medicine in Baltimore, who was not involved in the research. Two teams, working independently, each describe the new cell online August 1 in Nature.

The ionocyte shares its name with similar cells found in fish gills and frog skin. This type of cell regulates fluid movement at surfaces — skin, gills, airways — where air and water meet. In people, special proteins that tunnel across cell membranes lining the airways allow chloride ions (half of what makes salt) to move into the airway. This causes water to move into the airway through a different channel to moisten mucus along the lining, which helps it remove bacteria and inhaled particles from the body.

The tunnel protein that allows chloride ions through is made by a gene called CFTR. In cystic fibrosis patients, that gene is flawed. Airways can’t regulate water movement properly and get clogged with thick mucus that traps bacteria and leads to persistent infections and lung damage. The genetic disease affects at least 70,000 people worldwide, according to the Cystic Fibrosis Foundation in Bethesda, Md.

Researchers had suspected CFTR was most active in ciliated cells — cells with brushlike projections that work along with the mucus in airways to move invaders out. But the new work found very little gene activity in those cells, compared with the ionocytes.

In experiments with laboratory samples of mouse cells from the airway lining, cell biologist Jayaraj Rajagopal of Massachusetts General Hospital in Boston and his colleagues found that the gene was very active in ionocytes: out of all the instructions for building the tunnels detected in the cells, 54 percent came from ionocytes. Aron Jaffe, a respiratory disease researcher at Novartis Institutes for Biomedical Research in Cambridge, Mass., and his colleagues reported that, in laboratory samples of human airways cells, ionocytes were the source of 60 percent of the activity of the tunnels.

The discovery of the new cells raises a lot of questions. Jaffe wonders where ionocytes are positioned in the lining of the airways, and how that placement supports the coordination of water movement and mucus secretion by other cells. “You can imagine the distribution [of ionocytes] is really important,” he says.

A question Rajagopal has: “How does a rare cell type do all of this work?” In fish and frogs, ionocytes are loaded with mitochondria, the so-called cellular energy factories, he notes. Maybe that will be true for human ionocytes, too, giving them lots of energy to do the lion’s share of regulating the movement of water.

Both researchers say the ionocyte’s discovery should lead to a better understanding of cystic fibrosis. “It will let us think about creative new ways to approach the disease,” Rajagopal says.

Original article here.

A Cost-Utility Analysis Of Vertex’s CF Drugs — What It Teaches Us About Trial Design

By Claudia Dall’Osso, Ph.D., Ian Love, Ph.D., and Nuno Antunes, Ph.D., Decision Resources Group (DRG)

Commercial success in the pharmaceutical industry requires that clinical programs, in addition to demonstrating clinical effectiveness, also provide data supporting a drug’s value. The Institute for Clinical and Economic Research (ICER), a U.S.-based cost-effectiveness watchdog, recently released an analysis suggesting that Vertex Pharmaceuticals’ cystic fibrosis (CF) franchise — Kalydeco, Orkambi, and the recently launched Symdeko — while offering meaningful clinical efficacy, would require discounts of approximately 70 percent1 to be cost-effective.

Here, we review ICER’s cost-effectiveness analysis of the Vertex CF franchise to highlight lessons for orphan drug developers related to clinical trial designs and outcome metrics that would facilitate more favorable cost-effectiveness evaluations by stakeholders who employ cost-utility modeling (e.g., ICER, U.K.’s National Institute for Health and Care Excellence [NICE]).

Calculating The Cost-Effectiveness Of Vertex’s Cystic Fibrosis Franchise

In a cost-utility model, health economic analysts strive to calculate the incremental cost to gain an extra quality-adjusted life year (QALY); they estimate a therapy’s impact on the level of utility patients are deriving from their life based on their health status and incorporate these data into a quantitative estimate of QALYs (Figure 1). The goal of the cost-utility analysis is to determine whether a therapeutic intervention changes the QALYs that patients will accumulate over a set time period (e.g., lifetime), and at what added cost. The threshold for what is considered an acceptable incremental cost per QALY varies by stakeholder; ICER typically presents a sensitivity analysis across a range of thresholds (e.g., $50,000 to $500,000 per QALY for an ultra-rare disease like CF).

In our view, data gaps opened the possibility of a potential undervaluation of the Vertex CF transmembrane conductance (CFTR) modulators on several metrics and, ultimately, on overall survival in the context of the ICER model. Vertex’s pivotal clinical trials captured the effect of CFTR modulators on the two organs chiefly affected in CF — the lungs and the pancreas — with outcome metrics for pulmonary function, percent-predicted 1-second forced expiratory volume (ppFEV1), and pulmonary exacerbation rate, as well as pancreatic sufficiency (body weight) (Figure 2). However, data on metrics assessing emerging complications (e.g., CF-dependent diabetes or bacterial infections), impact on use of other medications (e.g., pancreatic enzyme replacement therapy, mucolytics), reduction in healthcare resource utilization, or reduction in disease burden were far more limited, but these attributes were included in ICER’s cost-effectiveness analysis. Lacking clear clinical trial data on the metrics outlined above, health economists relied on arguably conservative assumptions to estimate the impact of the Vertex CFTR modulators on these domains. Because the Vertex CF franchise has a relatively short market history, and the long-term risks/benefits of the drugs are incompletely understood, assumptions to model the long-term impact of these medicines were also necessary.

For instance, to evaluate survival, ICER modeled the impact of CF-related diabetes in its analysis of CF patients’ health status. Owing to the dearth of clinical trial data on CF-related diabetes in the development program for the Vertex drugs, the company’s CFTR modulators were assumed not to impact this outcome (Figure 2). Treatment with the Vertex CFTR modulators was also conservatively assumed to have no long-term impact on weight after an initial increase and, without long-term data, the drugs’ impact on ppFEV1 beyond two years of treatment was modeled as a 50 percent reduction in the rate of ppFEV1 decline.

Notably, several CF experts interviewed by DRG consider it possible that early treatment of newborns could prevent disease development. The potential impact of early treatment with CFTR modulators on disease development and survival was not explored in the ICER analysis; although little data is available to support such an impact of the Vertex drugs, ICER has considered such scenarios largely unsupported in other evaluations (e.g., a cost-effectiveness evaluation of Spark Therapeutics’ Luxturna for the treatment of retinitis pigmentosa).

The translation of clinical trial data to utility is a second area wherein a manufacturer may lose traction in a cost-utility analysis, if the utility calculation isn’t sufficiently comprehensive or if the drug’s data package is insufficient to support its impact on all relevant metrics. In the ICER analysis of the Vertex franchise, health economists used the ppFEV1 metric to derive a utility curve by assigning a level of benefit to a specific ppFEV1 value. Although this is the most straightforward approach, it also results in an assessment of health benefits that relies exclusively on a mechanical respiratory metric, which may not adequately capture the quality of life experienced by patients, especially considering the multi-organ nature of CF. Indeed, at the May 17 presentation of the ICER model, stakeholders from the Cystic Fibrosis Foundation levied this criticism. Furthermore, ICER’s sensitivity analyses showed that changes in the relationship between ppFEV1 and utility could significantly affect the overall cost-effectiveness assessment. Notably, an alternative scenario in which the utility was increased by 5 percent, to account for clinical effects of a drug beyond pulmonary function, led to a 15 percent decrease in the cost-effectiveness ratio.

Similarly, the impact of the Vertex franchise on payer budgets in the ICER model related only to pulmonary supportive care, while other non-pulmonary expenses remained unchanged — an assumption made in the context of available data, but one that may not fully reflect the benefit of the drugs. Furthermore, the CFTR modulators did not impact the burden of supportive care for CF patients in the model, nor did they impact patients’ productivity. Ultimately, suboptimal alignment of clinical trial data with the demands of a comprehensive (e.g., multi-organ) cost-effectiveness model may have diminished the opportunity for the Vertex franchise to perform maximally in this cost-utility analysis.

Key Lessons And Takeaways For Drug Developers

Although clinical outcome data collected by Vertex was sufficient to gain an FDA green light, it was not sufficient to support a comprehensive analysis of cost-effectiveness in this multi-organ disease. As such, assumptions regarding drug impact were necessary in areas not adequately supported by data, opening the possibility for a suboptimal cost-effectiveness evaluation. To support more favorable and data-supported evaluations, developers should design clinical trials with an eye on cost-effectiveness.

  • Prior to initiating clinical trials, manufacturers should consider how a health status model is likely to be designed to assess cost-effectiveness. They should consider enrolling the assistance of academic researchers to understand which metrics may be important in such a model and to aid in the development of a reliable model in an area where none is established. With this analysis in mind, developers should strive to design a clinical program that covers relevant metrics and the durability of a drug’s impact on them. Indeed, an alternative scenario developed by ICER showed that a change in the long-term effectiveness assumption on ppFEV1 would have a profound impact on the final cost-effectiveness assessment; for Kalydeco, assuming no decline in ppFEV1 after the first two years (rather than 50 percent) decreased the incremental cost-effectiveness ratio ($ per QALY) by approximately 35 percent.
  • Developers should work to understand how key clinical metrics in a given disease area are translated into utility. In a disease with an established function, it is prudent to carefully survey the relevant literature. When developing a pioneering treatment, manufacturers should consider investment into the development of a utility curve that accurately accomplishes this, which would likely facilitate a reliable QALY calculation or at least more detailed/specific alternative scenarios and sensitivity analyses.
  • Understand the patient journey and track healthcare resource utilization during a clinical trial to more fully support an accurate assessment of cost of care, as a favorable impact on direct healthcare costs is important to attain widespread reimbursement.
  • Although metrics such as burden of care, caregiver burden, or productivity loss are difficult to rigorously track, they can be immensely valuable in highlighting the favorable indirect effects of disease-modifying drugs beyond the clinical efficacy. Understanding patients’ pain points and, ideally, tracking these metrics when possible (e.g., with real-world data or social media listening analyses) may further strengthen and support conventional metrics from clinical trials.

As market access hurdles intensify, and ICER’s analyses increasingly inform payer policy, anticipating and preparing for cost-utility analyses early in the design of a clinical program will be paramount to support a medicine’s value proposition with U.S. insurers.

Original article found here.

Positive Data from the CARE CF 1 Clinical Study of Oral Lynovex in Cystic Fibrosis Exacerbations

NovaBiotics Ltd (“NovaBiotics”) announces that its oral therapy for cystic fibrosis (CF), Lynovex®, has met the study objectives of the CARE CF 1 clinical trial.

CARE CF 1 assessed the effects of two weeks of Lynovex treatment as an adjunct to standard of care therapy (SOCT) in CF, compared to placebo plus SOCT. This trial was designed to determine whether the inclusion of Lynovex capsules alongside SOCT lessened the clinical impact of exacerbations in adults with CF, as measured by symptom severity and levels of bacteria and inflammatory mediators in sputum and blood.  CARE CF 1 was a 6-arm study with the primary objectives of determining the optimal dose and regimen of Lynovex in patients with exacerbations of CF-associated lung disease and to further evaluate the safety and tolerability of Lynovex in exacerbating CF patients.  Continue reading Positive Data from the CARE CF 1 Clinical Study of Oral Lynovex in Cystic Fibrosis Exacerbations

Omega-3 Compound Reduces Inflammation in Cystic Fibrosis Patients in New Pilot Study

By Jennifer Prince

A marine omega-3 compound comprising a docosahexaenoic acid (DHA) sn1-monoacylglyceride (MAG-DHA) may act as an anti-inflammatory for subjects with cystic fibrosis, according to a new pilot study1 published in the journal Marine Drugs. In the study, MaxSimil (Neptune Wellness Solutions; Laval, QC, Canada) increased omega-3 red blood cell levels, helped moderate the ratio of arachidonic acid (AA) to docosahexaenoic acid, and reduced key inflammatory biomarkers in subjects with cystic fibrosis. Continue reading Omega-3 Compound Reduces Inflammation in Cystic Fibrosis Patients in New Pilot Study