A Cost-Utility Analysis Of Vertex’s CF Drugs — What It Teaches Us About Trial Design

By Claudia Dall’Osso, Ph.D., Ian Love, Ph.D., and Nuno Antunes, Ph.D., Decision Resources Group (DRG)

Commercial success in the pharmaceutical industry requires that clinical programs, in addition to demonstrating clinical effectiveness, also provide data supporting a drug’s value. The Institute for Clinical and Economic Research (ICER), a U.S.-based cost-effectiveness watchdog, recently released an analysis suggesting that Vertex Pharmaceuticals’ cystic fibrosis (CF) franchise — Kalydeco, Orkambi, and the recently launched Symdeko — while offering meaningful clinical efficacy, would require discounts of approximately 70 percent1 to be cost-effective.

Here, we review ICER’s cost-effectiveness analysis of the Vertex CF franchise to highlight lessons for orphan drug developers related to clinical trial designs and outcome metrics that would facilitate more favorable cost-effectiveness evaluations by stakeholders who employ cost-utility modeling (e.g., ICER, U.K.’s National Institute for Health and Care Excellence [NICE]).

Calculating The Cost-Effectiveness Of Vertex’s Cystic Fibrosis Franchise

In a cost-utility model, health economic analysts strive to calculate the incremental cost to gain an extra quality-adjusted life year (QALY); they estimate a therapy’s impact on the level of utility patients are deriving from their life based on their health status and incorporate these data into a quantitative estimate of QALYs (Figure 1). The goal of the cost-utility analysis is to determine whether a therapeutic intervention changes the QALYs that patients will accumulate over a set time period (e.g., lifetime), and at what added cost. The threshold for what is considered an acceptable incremental cost per QALY varies by stakeholder; ICER typically presents a sensitivity analysis across a range of thresholds (e.g., $50,000 to $500,000 per QALY for an ultra-rare disease like CF).

In our view, data gaps opened the possibility of a potential undervaluation of the Vertex CF transmembrane conductance (CFTR) modulators on several metrics and, ultimately, on overall survival in the context of the ICER model. Vertex’s pivotal clinical trials captured the effect of CFTR modulators on the two organs chiefly affected in CF — the lungs and the pancreas — with outcome metrics for pulmonary function, percent-predicted 1-second forced expiratory volume (ppFEV1), and pulmonary exacerbation rate, as well as pancreatic sufficiency (body weight) (Figure 2). However, data on metrics assessing emerging complications (e.g., CF-dependent diabetes or bacterial infections), impact on use of other medications (e.g., pancreatic enzyme replacement therapy, mucolytics), reduction in healthcare resource utilization, or reduction in disease burden were far more limited, but these attributes were included in ICER’s cost-effectiveness analysis. Lacking clear clinical trial data on the metrics outlined above, health economists relied on arguably conservative assumptions to estimate the impact of the Vertex CFTR modulators on these domains. Because the Vertex CF franchise has a relatively short market history, and the long-term risks/benefits of the drugs are incompletely understood, assumptions to model the long-term impact of these medicines were also necessary.

For instance, to evaluate survival, ICER modeled the impact of CF-related diabetes in its analysis of CF patients’ health status. Owing to the dearth of clinical trial data on CF-related diabetes in the development program for the Vertex drugs, the company’s CFTR modulators were assumed not to impact this outcome (Figure 2). Treatment with the Vertex CFTR modulators was also conservatively assumed to have no long-term impact on weight after an initial increase and, without long-term data, the drugs’ impact on ppFEV1 beyond two years of treatment was modeled as a 50 percent reduction in the rate of ppFEV1 decline.

Notably, several CF experts interviewed by DRG consider it possible that early treatment of newborns could prevent disease development. The potential impact of early treatment with CFTR modulators on disease development and survival was not explored in the ICER analysis; although little data is available to support such an impact of the Vertex drugs, ICER has considered such scenarios largely unsupported in other evaluations (e.g., a cost-effectiveness evaluation of Spark Therapeutics’ Luxturna for the treatment of retinitis pigmentosa).

The translation of clinical trial data to utility is a second area wherein a manufacturer may lose traction in a cost-utility analysis, if the utility calculation isn’t sufficiently comprehensive or if the drug’s data package is insufficient to support its impact on all relevant metrics. In the ICER analysis of the Vertex franchise, health economists used the ppFEV1 metric to derive a utility curve by assigning a level of benefit to a specific ppFEV1 value. Although this is the most straightforward approach, it also results in an assessment of health benefits that relies exclusively on a mechanical respiratory metric, which may not adequately capture the quality of life experienced by patients, especially considering the multi-organ nature of CF. Indeed, at the May 17 presentation of the ICER model, stakeholders from the Cystic Fibrosis Foundation levied this criticism. Furthermore, ICER’s sensitivity analyses showed that changes in the relationship between ppFEV1 and utility could significantly affect the overall cost-effectiveness assessment. Notably, an alternative scenario in which the utility was increased by 5 percent, to account for clinical effects of a drug beyond pulmonary function, led to a 15 percent decrease in the cost-effectiveness ratio.

Similarly, the impact of the Vertex franchise on payer budgets in the ICER model related only to pulmonary supportive care, while other non-pulmonary expenses remained unchanged — an assumption made in the context of available data, but one that may not fully reflect the benefit of the drugs. Furthermore, the CFTR modulators did not impact the burden of supportive care for CF patients in the model, nor did they impact patients’ productivity. Ultimately, suboptimal alignment of clinical trial data with the demands of a comprehensive (e.g., multi-organ) cost-effectiveness model may have diminished the opportunity for the Vertex franchise to perform maximally in this cost-utility analysis.

Key Lessons And Takeaways For Drug Developers

Although clinical outcome data collected by Vertex was sufficient to gain an FDA green light, it was not sufficient to support a comprehensive analysis of cost-effectiveness in this multi-organ disease. As such, assumptions regarding drug impact were necessary in areas not adequately supported by data, opening the possibility for a suboptimal cost-effectiveness evaluation. To support more favorable and data-supported evaluations, developers should design clinical trials with an eye on cost-effectiveness.

  • Prior to initiating clinical trials, manufacturers should consider how a health status model is likely to be designed to assess cost-effectiveness. They should consider enrolling the assistance of academic researchers to understand which metrics may be important in such a model and to aid in the development of a reliable model in an area where none is established. With this analysis in mind, developers should strive to design a clinical program that covers relevant metrics and the durability of a drug’s impact on them. Indeed, an alternative scenario developed by ICER showed that a change in the long-term effectiveness assumption on ppFEV1 would have a profound impact on the final cost-effectiveness assessment; for Kalydeco, assuming no decline in ppFEV1 after the first two years (rather than 50 percent) decreased the incremental cost-effectiveness ratio ($ per QALY) by approximately 35 percent.
  • Developers should work to understand how key clinical metrics in a given disease area are translated into utility. In a disease with an established function, it is prudent to carefully survey the relevant literature. When developing a pioneering treatment, manufacturers should consider investment into the development of a utility curve that accurately accomplishes this, which would likely facilitate a reliable QALY calculation or at least more detailed/specific alternative scenarios and sensitivity analyses.
  • Understand the patient journey and track healthcare resource utilization during a clinical trial to more fully support an accurate assessment of cost of care, as a favorable impact on direct healthcare costs is important to attain widespread reimbursement.
  • Although metrics such as burden of care, caregiver burden, or productivity loss are difficult to rigorously track, they can be immensely valuable in highlighting the favorable indirect effects of disease-modifying drugs beyond the clinical efficacy. Understanding patients’ pain points and, ideally, tracking these metrics when possible (e.g., with real-world data or social media listening analyses) may further strengthen and support conventional metrics from clinical trials.

As market access hurdles intensify, and ICER’s analyses increasingly inform payer policy, anticipating and preparing for cost-utility analyses early in the design of a clinical program will be paramount to support a medicine’s value proposition with U.S. insurers.

Original article found here.

Positive Data from the CARE CF 1 Clinical Study of Oral Lynovex in Cystic Fibrosis Exacerbations

NovaBiotics Ltd (“NovaBiotics”) announces that its oral therapy for cystic fibrosis (CF), Lynovex®, has met the study objectives of the CARE CF 1 clinical trial.

CARE CF 1 assessed the effects of two weeks of Lynovex treatment as an adjunct to standard of care therapy (SOCT) in CF, compared to placebo plus SOCT. This trial was designed to determine whether the inclusion of Lynovex capsules alongside SOCT lessened the clinical impact of exacerbations in adults with CF, as measured by symptom severity and levels of bacteria and inflammatory mediators in sputum and blood.  CARE CF 1 was a 6-arm study with the primary objectives of determining the optimal dose and regimen of Lynovex in patients with exacerbations of CF-associated lung disease and to further evaluate the safety and tolerability of Lynovex in exacerbating CF patients.  Continue reading Positive Data from the CARE CF 1 Clinical Study of Oral Lynovex in Cystic Fibrosis Exacerbations

Omega-3 Compound Reduces Inflammation in Cystic Fibrosis Patients in New Pilot Study

By Jennifer Prince

A marine omega-3 compound comprising a docosahexaenoic acid (DHA) sn1-monoacylglyceride (MAG-DHA) may act as an anti-inflammatory for subjects with cystic fibrosis, according to a new pilot study1 published in the journal Marine Drugs. In the study, MaxSimil (Neptune Wellness Solutions; Laval, QC, Canada) increased omega-3 red blood cell levels, helped moderate the ratio of arachidonic acid (AA) to docosahexaenoic acid, and reduced key inflammatory biomarkers in subjects with cystic fibrosis. Continue reading Omega-3 Compound Reduces Inflammation in Cystic Fibrosis Patients in New Pilot Study

Toothpaste ingredient may bust up cystic fibrosis biofilms

By Chris Waters and Sarina Gleason

A common antibacterial substance in toothpaste may combat life-threatening diseases such as cystic fibrosis when combined with an with an FDA-approved drug, researchers report.

Researchers have found that when triclosan, a substance that reduces or prevents bacteria from growing, combines with an antibiotic called tobramycin, it kills the cells that protect the CF bacteria, known as Pseudomonas aeruginosa, by up to 99.9 percent.

CF is a common genetic disease with one in every 2,500 to 3,500 people diagnosed with it at an early age. It results in a thick mucus in the lungs, which becomes a magnet for bacteria.

These bacteria are notoriously difficult to kill because a slimy barrier known as a biofilm, which allows the disease to thrive even when treated with antibiotics, protects them.

“The problem that we’re really tackling is finding ways to kill these biofilms,” says Chris Waters, lead author of the study and a microbiology professor at Michigan State University.

According to Waters, there are many common biofilm-related infections that people get, including ear infections and swollen, painful gums caused by gingivitis. But more serious, potentially fatal diseases join the ranks of CF including endocarditis, or inflammation of the heart, as well as infections from artificial hip and pacemaker implants.

Waters and his coauthors grew 6,000 biofilms in petri dishes, added in tobramycin along with many different compounds, to see what worked better at killing the bacteria. Twenty-five potential compounds were effective, but one stood out.

“It’s well known that triclosan, when used by itself, isn’t effective at killing Pseudomonas aeruginosa,” says coauthor Alessandra Hunt, a postdoctoral associate of microbiology and molecular genetics. “But when I saw it listed as a possible compound to use with tobramycin, I was intrigued. We found triclosan was the one that worked every time.”

Triclosan has been used for more than 40 years in soaps, makeup, and other commercial products because of its antibacterial properties. Recently, the FDA ruled to limit its use in soaps and hand sanitizers due to insufficient data on its increased effectiveness and concern about overuse. Clear evidence has shown, though, that its use in toothpaste is safe and highly effective in fighting gingivitis, and it is still approved for use.

“Limiting its use is the right thing to do,” says coauthor Michael Maiden, a graduate student in medicine. “The key is to avoid creating resistance to a substance so when it’s found in numerous products, the chances of that happening increase.”

Tobramycin is currently the most widely used treatment for CF, but it typically doesn’t clear the lungs of infection, Waters says. Patients typically inhale the drug, yet still find themselves chronically infected their whole lives, eventually needing a lung transplant.

“Most transplants aren’t a viable option though for these patients and those who do have a transplant see a 50 percent failure rate within five years,” he says. “The other issue is that tobramycin can be toxic itself.” Known side effects from the drug include kidney toxicity and hearing loss.

“Our triclosan finding gives doctors another potential option and allows them to use significantly less of the tobramycin in treatment, potentially reducing its use by 100 times,” Hunt says.

Within the next year, Waters and his colleagues will begin testing the effectiveness of the combination therapy on mice with hopes of it heading to a human trial soon after since both drugs are already FDA approved.

Just brushing your teeth with toothpaste that has triclosan won’t help to treat lung infections though, Maiden says.

“We’re working to get this potential therapy approved so we can provide a new treatment option for CF patients, as well as treat other biofilm infections that are now untreatable. We think this can save lives,” he says.

The research appears in the journal Antimicrobial Agents and Chemotherapy.

The National Institutes of Health, Cystic Fibrosis Foundation, and Hunt for a Cure in Grand Rapids, Michigan funded the research.

Source: Michigan State University

CF Foundation ‘Venture Philanthropy’ Model Crucial to CF Breakthroughs

By Larry Luxner

When the Cystic Fibrosis Foundation (CFF) was established in 1955, most people with cystic fibrosis (CF) didn’t make it to their sixth birthday. Today, the average life expectancy of a CF patient is 47 years.

To date, the U.S. Food and Drug Administration has approved 12 CF therapies. Three of them are CFTR modulators that treat the basic disease-causing defect, benefiting 60 percent of all patients, and more therapies are on the way.

Preston W. Campbell III, the CFF’s president and CEO, directly attributes this dramatic improvement to the foundation’s philosophy of “venture philanthropy.”

“We are now in Phase 3 CFTR trials that, if successful, will mean that as early as next year, more than 90 percent of all individuals with CF will have a highly effective therapy targeting CF’s basic defect,” he said. “More therapies that treat the complications of CF are in the pipeline than ever before.

“It begs the question: how did all of this happen?”

Campbell answered that during his March 26 presentation, “Patient advocates taking a real stand in drug development: How the CFF worked with biotech and pharma to find a cure,” at the 2018 World Orphan Drug Congress USA in Oxon Hill, Maryland.

Back in 1960, the Bethesda, Maryland-based foundation broke ground by establishing a Care Center Network to provide multidisciplinary care. Within five more years, it had formed a patient registry.

With only $400,000 in the bank, it would also commit $11 million to research, Campbell said. “Five years later, in 1985, the basic CF defect was identified, and in 1989, the CFTR gene was discovered. That opened the floodgates,” he added.

Campbell’s predecessor, Robert J. Beall, created the Therapeutics Development Program — now called its Venture Philanthropy Model — in 1998 to entice industry to focus on CF, and specifically on CFTR as a target. Its three components were financial assistance, research tools and scientific advice, and a clinical trials network.

“We would lower the risk for industry to come into the CF space. We also made our research tools and scientific advice freely available, and we also embedded the best scientists in the world in these industry programs,” said Campbell, who took over from Beall as head of the CFF in January 2016. “Finally, in order to make sure clinical trials were safely and efficiently done, we created a clinical trials network that originally had seven centers and now has 89.”

In the beginning, CFF’s investments were typically in the $1.5 million range. Ultimately, the foundation invested more than $100 million in Aurora and its successor, Vertex Pharmaceuticals, whose headquarters are in Boston.

To date, the FDA has approved three Vertex CFTR modulators: Kalydeco (ivacaftor) for patients with the G551D mutation in the CFTR gene (2012); Orkambi (lumacaftor/ivacaftor)for patients who are homozygous for F508del, the most common mutation in the CFTR gene (2015); and Symdeko (tezacaftor/ivacaftor) for homozygous F508del patients as well as others (2018).

“Payments are milestone-based, so we pay for success,” Campbell said. “A scientific advisory committee determines if milestones are met and if the project should continue. Successful programs offer a return on our investment, so if the program is foundering, we shake hands and walk away.”

To continue to full article, please click here.

Potential Therapy for Infections in CF Gets Patent

AB569Arch Biopartners’ treatment candidate for bacterial infections in patients with cystic fibrosis, chronic obstructive pulmonary disease (COPD), and other respiratory conditions, has received a U.S. patent.

The U.S. Patent and Trademark Office issued patent 9,925,206 to the University of Cincinnati, which granted Arch Biopartners an exclusive commercial license on all patents related to AB569. The inventor is Daniel Hassett, PhD, a principal scientist at Arch and professor at the University of Cincinnati College Of Medicine.

“This patent issuance, which protects the composition of AB569, gives Arch a stronger commercial position to pursue treating not just CF patients, but also the millions of other patients that have chronic antibiotic resistant lung infections including those with COPD,” Richard Muruve, CEO of Arch, said in a press release. “It also opens the door for Arch to develop treatments for many other indications where antibiotic resistance is a problem, such as urinary tract infections and wound care.”

Bacterial infections in the lungs are a serious problem in patients with CF, COPD, or ventilator-associated pneumonia. Cystic fibrosis patients are susceptible to bacterial respiratory infections as a result of abnormal mucus production in the lungs and airways.

In particular, the bacterium Pseudomonas aeruginosa (P. aeruginosa) affects most adult CF patients and 40 percent of CF children ages 6 to 10. The mucoid form of P. aeruginosa is highly resistant to conventional antibiotics and immune-mediated killing. It causes a rapid decline in lung function and a poor overall clinical prognosis.

Antibiotic use in the treatment of CF and COPD patients with chronic bacterial respiratory infections is increasing, which correlates with a higher prevalence of antibiotic-resistant strains.

AB569 is a non-antibiotic therapy made of sodium nitrite and ethylenediaminetetraacetic acid (EDTA), two compounds approved by the U.S. Food and Drug Administration (FDA) for human use. The treatment has a different mechanism of action from antibiotics that may increase effectiveness, Arch believes.

“AB569 has two active ingredients that produce a dramatic and synergistic effect at killing many antibiotic resistant bacteria including Pseudomonas aeruginosa (P. aeruginosa), which commonly causes severe chronic infections in the lungs of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients,” Hassett said. “AB569 has the potential to make a significant medical impact on treating infection where traditional antibiotics fail.”

In preclinical experiments, the therapy showed significant ability to kill several types of Gram-negative and Gram-positive bacteria.

The safety and pharmacokinetics of a single administration of nebulized AB569 are now being evaluated in a Phase 1 clinical trial with up to 25 healthy volunteers at the Cincinnati Veterans Affairs Medical Center (CVAMC). Pharmacokinetics refers to how a drug is absorbed, distributed, metabolized, and expelled by the body. Enrollment of volunteers started in February.

If the Phase 1 study provides positive results, the company plans to start a Phase 2 trial to test the effectiveness of AB569 in the treatment of chronic lung infections caused by P. aeruginosa and other bacterial pathogens in CF and/or COPD patients.

AB569 previously received orphan drug status from the FDA for the treatment of CF patients infected with P. aeruginosa, and orphan medicinal product designation from the European Medicines Agency.

For original article, click here.

FDA approves Proteostasis’s triple combination program for CF

Singapore — Proteostasis Therapeutics, a clinical stage biopharmaceutical company dedicated to the discovery and development of ground-breaking therapies to treat cystic fibrosis (CF) and other diseases caused by dysfunctional protein processing, announced that the U.S. Food and Drug Administration (FDA) has granted Fast Track Designation for the Company’s triple combination program for the treatment of cystic fibrosis. The Company’s proprietary triple combination includes a novel cystic fibrosis transmembrane conductance regulator (CFTR) amplifier, third generation corrector and potentiator, known as PTI-428, PTI-801 and PTI-808, respectively. The Company announced in January that the protocol for its triple combination clinical study, which the Company plans to initiate in the current quarter, has received endorsement and a high strategic fit score from the Therapeutics Development Network (TDN) and the Clinical Trial Network (CTN), the drug development arms of the Cystic Fibrosis Foundation (CFF) and the European CF Society (ECFS), respectively.

“Fast Track designation represents another positive step for the development of our triple combination therapy and underscores the serious unmet need that remains for the vast majority of CF patients,” said Meenu Chhabra, president and chief executive officer of Proteostasis Therapeutics.

The FDA’s Fast Track program is designed to facilitate the development and expedite the review of new drugs that are intended to treat serious or life-threatening conditions and that demonstrate the potential to address unmet medical needs. An investigational drug that receives Fast Track program designation is eligible for more frequent communications between the FDA and the company relating to the development plan and clinical trial design and may be eligible for priority review if certain criteria are met.

To read original article click here.

Antibiotic resistance evolution of Pseudomonas aeruginosain cystic fibrosis patients

By Francesca Lucca, Margherita Guarnieri, Mirco Ros, Giovanni Muffato, Roberto Rigoli, and Liviana Da Dalt

Below is a study hoping to define and answer the questions of Pseudomonas aeruginosain, its evolution and the resistance from different antibiotics. The study took place between 2010-2013. Though the study may have some time clauses I believe there are some strong findings for the CF community moving forward.
_________________________________________________________________________________

Introduction

Pseudomonas aeruginosa is the predominant pathogen responsible of chronic colonization of the airways in cystic fibrosis (CF) patients. There are few European data about antibiotic susceptibility evolution of P aeruginosa in CF patients.

Objectives

The aim of this study is to evaluate the evolution of antibiotic resistance in the period 2010‐2013 in CF patients chronically colonized by P aeruginosa and to highlight the characteristics of this evolution in patients younger than 20 years.

Methods

Clinical and microbiological data were extracted from two electronic databases and analyzed. Antibiotic resistance was defined according to European Committee of Antimicrobial Susceptibility Testing for levofloxacin, ciprofloxacin, meropenem, amikacin and ceftazidime. The between‐group comparison was drawn with the Chi‐square test for proportions, with the T‐test for unpaired samples for normally distributed data and with Mann‐Whitney test for non‐normally distributed data. Significancy was defined by P < .05.

Results

Fifty‐seven CF patients, including thirteen subjects aged less than 20 years, were enrolled. P.. aeruginosa antibiotic sensitivity decreased significantly for fluoroquinolones, mainly in patients aged <20 years, while it increased for amikacin and colistin. The analysis of minimum inhibitory concentration confirmed these trends. In pediatric patients treated with more than three antibiotic cycles per year, greater resistance was found, except for amikacin and colistin.

Conclusion

An evolution in P aeruginosa antibiotic resistances is observed in the 4‐year period studied. Responsible and informed use of antibiotics is mandatory in CF.
___________________________________________________________________________________
Read the whole clinical journal here. 

Antibiotic resistance evolution of Pseudomonas aeruginosa in cystic fibrosis patients (2010‐2013) Francesca Lucca,Margherita Guarnieri,Mirco Ros,Giovanna Muffato,Roberto Rigoli,Liviana Da Dalt. First published: 1 April 2018. https://doi.org/10.1111/crj.12787

Potential Nitric Oxide Treatment for Resistant Bacterial Infections Gets Patent

A possible inhalable treatment for antibiotic-resistant bacterial infections in people with cystic fibrosis due to Pseudomonas aeruginosa now has a U.S. patent and is being readied for a first clinical trial, Novoclem Therapeutics announced.

The patent (No. 9,850,322) was issued to the University of North Carolina (UNC) at Chapel Hill where the potential therapy, BIOC51, was discovered, and covers a technology known as water-soluble polyglucosamine compositions that release nitric oxideContinue reading Potential Nitric Oxide Treatment for Resistant Bacterial Infections Gets Patent

Clinical Trial Opportunity for Phase IV Airway Clearance System

Med Systems is sponsoring a Phase IV clinical study to measure the
effectiveness of the Electro Flo 5000 Airway Clearance System for
people who have been diagnosed with cystic fibrosis. The goal of the
study is to provide health insurers and Medicare with comprehensive
information regarding the system’s performance. The study is designed
to measure the efficacy of the system, which includes the FDA510K
(K031876) device under current indications. The study will last 30 days
and involve using the system for lung clearance and recording the
results in a digital journal. The study should take about 10 minutes per
day to record measured results in the morning after waking. You will
also be asked to use a spirometer and a digital pulse oximeter to
evaluate your lung function after using the Electro Flo 5000 Airway
Clearance System.

Interested participants must be:
 Between the ages of 18-55 years of age
 Diagnosed with cystic fibrosis
 Prescribed chest physical therapy for airway clearance
 Able to perform self-treatment- having manual dexterity
 Residing in the United States

Contact- Dr. Leigh Mack: CFtrial@mackbio.com or Phone 888-935-
8676 ext. 706