Pushing Through the Fear – Guest Blog By Andrea Eisenman

By Andrea Eisenman

So many fears, where do I begin. Let’s start with my impending trip to Seattle from NYC. I like to travel but it gets complicated. How much room in my suitcase do I have to pack my myriad of machines and meds? And how much will I forget, despite my thorough list? I learned I had to put obvious things on my list like a hairbrush after I forgot that a few times. But when it is easily purchased at a drug store, no biggy. When it is my immune suppressants or a nebulizer, that is harder to replace.

I now have a lot more machinery to tote around when I leave home. I have my CPAP, my percussor and my inhalation machine and a facial steamer for my sinuses, plus my Neti pot for nasal lavage. These things become cumbersome and traveling light is not an option, I have to check my bag. So, planning is key for several days prior to take off. I am in that phase now. Packing it all. I bring enough meds for twice my travel time. My last trip to Seattle happened during 9/11. I could not fly home for a week. Luckily, I had an extra 10 days of medications to cover me.

My dad asked if I was up to the flight, it is a longer one than I have taken in many years. My answer is, I don’t know. I am fearful as I know I have lymphedema and even though I wear compression tights when I fly, it is less than comfy and I will swell in my upper body. I do have a compression machine for upper body swelling but it is way too big to bring. Will I be ok not using it for a few days? I am hoping the answer is yes. But because I do not know these things for certain, I have anxiety. And I worry I might get sick either from the flight or anytime during my trip. I do wear a mask in flight and try to stay as hydrated as possible in order to keep well. And of course, I will wipe down the area near my seat with cleaning wipes.

But in order to live a life, I have to take some risks. I had wanted to go to Seattle for a few years. It is therapeutic to get away once in a while and I had not traveled too far from home while my mom was alive. I wanted to be near enough if she needed me. I no longer have that worry. And maybe I used that as an excuse so I am now pushing myself to go on this trip. I know I can be resourceful and my doctors are only a phone call away if I get sick. There is a great CF center there and my friend is sensitive to my CF needs. When we were in college together she gave my CPT when I let her.

I find that when I push myself beyond my fears, I feel triumphant and am happy that I conquered them. Sometimes one has to get out of their comfort zone, even if it means wearing horribly tight pantyhose for six hours on a flight! I know it will be worth it and I can bond with my friend. I will feel like I accomplished something worthwhile. Maybe my next trip will be to Europe.

Cystic Fibrosis Podcast 195 Summiting Mount Everest and Denali with Nick Talbot

In the latest CF Podcast, Nick Talbot shares his incredibly unique journey with cystic fibrosis. From being diagnosed at the age of 13 to his latest climb – a trek up Denali, the highest point in North America – he constantly challenges himself to reach for his dreams. Nick stresses the importance of pushing one’s own personal limits and never being scared to fail – because failure simply means you tried.
Tune in to learn more about Nick and his cystic fibrosis story.

This video podcast was made possible through an unrestricted educational grant from Novartis to the Boomer Esiason Foundation.

Airway Clearance Vests Fail to Show Measurable Short-term Lung Benefits in Study

A note from CF Roundtable: Please do not stop using your Vest or other HFCWO device because of this impractical study. There are important differences in this study that make it not applicable to CF and therefore, not meaningful for us. First, healthy volunteers without CF were enrolled. Too many adults with CF have experienced significant benefits with these HFCWO devices, not to mention the preventive benefits. To imply these devices worsen lung function when used by a healthy nonCF person vs one with CF – with the usual accompanying inflammation, mucus +/- bronchiectasis, etc – is not practical. Second, these healthy subjects tested all 4 HFCWO devices in one day. Even when I repeat spirometry in one day, my lung function numbers most often decline over time, even with rest periods in between. The researchers tested lung function with a rest period of 15 minutes on these healthy individuals after use of the HFCWO device then moved on to the next device. Very impractical and again – not applicable to use by individuals with CF.

—————————————————————————————————————————

By Iqra Mumal

A clinical study into high-frequency chest wall oscillation vests — assessing their short-term impact on standard measures of lung function before and during use — challenges the view that these devices work through airflow bias in the lungs, the process responsible for mucus movement when breathing.

Findings, using established tests that include forced vital capacity (FVC), forced expiratory volume (FEV1), and forced expiratory flow (FEF25%-75%), suggest “that the concept of HFCWO vest-induced cephalad airflow bias is not supported by standard spirometry measurements,” researchers concluded. “None of the vest groups showed statistically significant increased airflow in the lungs.” Continue reading Airway Clearance Vests Fail to Show Measurable Short-term Lung Benefits in Study

Machine learning to help cystic fibrosis decision-making

By James Hayes

New research claims to have demonstrated that machine learning techniques can predict with a 35% improvement in accuracy – in comparison to existing statistical methods – whether a cystic fibrosis patient should be referred for a lung transplant.

The research, led by Professor Mihaela van der Schaar of the Alan Turing Institute at the University of Oxford, has been generated through a partnership between The Alan Turing Institute and charity the Cystic Fibrosis Trust. Continue reading Machine learning to help cystic fibrosis decision-making

AIT’s Inhaled Nitric Oxide Shows Potential in Fighting Bacterial Infection Prevalent in CF Patients

By Alice Melao

Inhaled nitric oxide (NO) was shown to be an effective antibacterial agent against Mycobacterium abscessus infection in preclinical studies, as well as in a pilot clinical trial, according to AIT Therapeutics.

The company discussed the latest data on its NO product in two poster presentations during the 3rd Annual World Bronchiectasis Conference held recently at Georgetown University in Washington, D.C.

NO is a small molecule that is an important mediator of immune defense mechanisms against infections. The compound has been shown to have broad-spectrum antibacterial activity against several strains of bacteria that often infect patients with underlying lung diseases, including cystic fibrosis (CF).

Continue reading AIT’s Inhaled Nitric Oxide Shows Potential in Fighting Bacterial Infection Prevalent in CF Patients

Phage-Coated Microparticles Treats Lung Conditions like CF

By SterlingAdmin

The methods available to treat bacterial infections are many. But among those with any real and lasting effectiveness, their usage is limited. Antibiotics were once the Holy Grail of medicine to deal with devastating diseases that wiped out entire populations. With them, these suffering conditions were almost entirely wiped out and the populace began to learn how to live without the fear of most children dying at a young age. But, as is well known, the age of antibiotic cure-alls is ending and the time of antibiotic resistance is beginning to reach its peak. So, medical researchers are hard at work on all the other opportunities for dealing with bacteria that don’t require these specific groups of compounds.

The Medicine of Viruses

Phage therapy is one such alternative that has begun to see more extensive use over the past two decades.Bacteriophages are lifeforms that have crafted over evolutionary time a niche focused on using bacteria as their reproductive hosts, killing said host in the process. And since they are living beings as well, they actively engage in the selective pressures of finding ways around resistance against them, rather than being a static attack on bacteria like antibiotics are. This means that even the most feared multi-drug resistant bacterial strains have little to no protection against phages.

The primary downside to this treatment is that phages are highly specialized, having formed themselves to only target a particular host species. Therefore, to deal with certain bacteria, one also has to find and be able to cultivate a certain type of phage. Once that step is accomplished, however, it has been found that they can be altered fairly easily to give them variable methods of attack, so as to minimize any potential side effects on the human body while they are killing the bacteria. They can even be set up to synergistically interact with the human immune system to work together to wipe out the bacterial invasion.

With the right phage strain, the largest remaining issue is how to get them into the human body and to the right type of location and system that the bacteria are also attacking from. A large proportion of phage research has gone into finding new ways to do this very thing, as it is one of the inefficient areas of the therapy and, if improved, can drastically heighten the success rates of the treatment and the types of bacterial diseases that can be combated.

It is difficult and time consuming to produce modified phage, with many of them dying in this fabrication. For bacterial diseases of the lungs, such as the kinds that like to colonize those suffering from cystic fibrosis, there is currently no true delivery method of getting phage into the deep lung tissues. And, of course, getting any single treatment approved requires showing success in some sort of animal model, even though the phages may not translate well or at all to anything other than humans. This is one of the major problems this author has with the current approval setup by governments for medical trials.

Microparticles For A Micro World

Scientists at the Georgia Institute of Technology have been seeking a new method for just such a delivery system. Dry powder formulations has seen some positive benefits for effectiveness in recent years, but there lingers the issue of how to use such a powder to delivery living phages to the right spot. To do so would require a very carefully made powder indeed.

The engineering techniques they brought into play were used to make phage-loaded microparticles (phage-MPs), hollow molecular structures formed using water-oil-water emulsion to keep them stable. The bacteria being combated was the opportunistic pathogen Pseudomonas aeruginosa and several strains of phage against it were chosen for the experiment.

The microparticles were housed in a phage-containing solution, allowing them to be filled with the phage after incubation. Though they were filled in a different way than the usual method of them being inside the MPs. Instead, they cover the exterior in this method after the MPs are made, meaning no phage are lost due to solvent usage during MP fabrication from the prior ways other studies used. Three to five phages were contained on the MPs in order to reduce the likelihood of any possible bacterial resistance.

This delivery mechanism also reduces endotoxin production by the phage, thereby minimizing side impacts of their use, with the reduction bringing them down to 0.078 endotoxin units (EUs), far below the accepted FDA limit of 20 EU in treatments. The technique was first tested on petri dishes containing the bacteria to which the phage-MPs were applied. The P. aeruginosa were modified to express green fluorescent protein (GFP) to identify their living location on the plates.

A Complete Victory

After 16 hours of co-incubation, large patches of non-fluorescence showed where the phage had successfully killed off the bacteria, while the control group MPs without a phage coating had no deaths. These zones were also far larger than the applied MP area, showing that the phage were able to spread and extend to other bacteria in the dishes. The same test was done using synthetic sputum to mimic the environment of an animal lung and the bacteria and phages were applied at the same time. There was no visible growth of bacteria after application, showing that the phages were able to both control and wipe them out. A further test showed the phage are also able to get past the protective biofilms of the bacteria that they make under environmental emergencies.

The dry powder formulations were also seen to have a large burst of phages initially, with slow release for two weeks after, the perfect way to allow consistent application and treatment against the bacteria. The final experiment involved using mice infected with the bacteria. A control test using just phage-MPs showed no negative effects on the mice or their lungs after application. Fluorescent phage-MPs also showed that they were only localized to the lungs and nowhere else in the body, as desired. The control using free form phages without microparticles revealed how the dry powder still didn’t allow them to be properly applied, with no major phage levels detected in those mouse lungs, proving that the MPs as a transport vector were required.

When tested on mice infected with P. aeruginosa, the bacterial count dropped by an entire order of magnitude and 100% of the mice survived their pneumonia, while the untreated control group only had 13% survive. For mice with a cystic fibrosis genetic mutation, the same test saw their bacterial counts drop by three orders of magnitude, approaching the limit of what could be detected. The phage-MPs also saw the same effectiveness against multiple strains of the bacteria, meaning that even genetic variance in a population wasn’t enough to defend against them.

A last point of importance is that when testing against a mouse group exposed to phage-MPs long before being infected and later treated, there was no reduction in effect and no antibodies against the phages seemed to develop. So there is likely no performance loss to the treatment if used multiple times.

The New Antibiotics

As a conclusion, the researchers were able to engineer specialized biomaterials made of microparticles that, when coated with bacteriophages, were highly effective at reducing bacterial counts for lung-related diseases, including those resulting from the lowered immune system responses of cystic fibrosis. These phage-MPs are stable and can be stored for a fair amount of time with no loss in phage amounts and can be administered through simple inhalation, meaning younger patients can be treated with less complications.

For lung-related diseases, and likely for broader conditions at large in the medical community, this breakthrough might serve as a major way to allow phage therapy to become more common and used in replacement of or as a sought after alternative to antibiotics. The number of lives this should be able to save in the long run is likely incalculable.

Press Article Link

Study Link

Original article Link

Antioxidant-Enriched Multivitamin May Decrease Respiratory Illnesses

MedicalResearch.com Interview with:

Scott D Sagel MD PhD
Professor of Pediatrics
University of Colorado School of Medicine
Aurora, Colorado

MedicalResearch.com: What is the background for this study?

Response: Inflammation is an important feature of cystic fibrosis (CF) lung disease and contributes to lung damage and lung function decline in CF. We need safe and effective anti-inflammatory treatments in CF. Anti-oxidant therapy has been an area of promise, but with mixed results in CF.

This clinical trial, conducted at 15 CF centers affiliated with the cystic fibrosis Foundation Therapeutics Development Network, enrolled 73 patients who were 10 years and older (average age 22 years), with pancreatic insufficiency, which causes malabsorption of antioxidants. Subjects were randomized to either a multivitamin containing multiple antioxidants including carotenoids such as beta(β)-carotene, tocopherols (vitamin E), coenzyme Q10 (CoQ10), and selenium or to a control multivitamin without antioxidant enrichment. The antioxidants used in the study were delivered in a capsule specifically designed for individuals with difficulties absorbing fats and proteins, including those with cystic fibrosis.

MedicalResearch.com: What are the main findings?

Response: Antioxidant supplementation was safe and well-tolerated. Supplemental antioxidants increased antioxidant concentrations in the bloodstream in treated subjects and temporarily reduced inflammation in the blood at four weeks but not 16 weeks. Airway inflammation, as measured in sputum, did not change significantly with antioxidant treatment. Importantly, antioxidant treatment appeared to both prolong the time to the first respiratory illness requiring antibiotics and reduce the frequency of respiratory illnesses they experienced.

MedicalResearch.com: What should readers take away from your report?

Response: Taking a specially formulated antioxidant-enriched multivitamin, containing multiple dietary antioxidants, may decrease respiratory illnesses in people with cystic fibrosis. While more research needs to be done to find a treatment that delivers a sustained anti-inflammatory effect, we believe the prolonged time patients had before their first respiratory illness is clinically meaningful. Also, the cost of a dietary antioxidant-enriched multivitamin is relatively modest compared to other currently available therapies that have been proven to reduce pulmonary exacerbations in cystic fibrosis.

MedicalResearch.com: What recommendations do you have for future research as a result of this study?

Response: We still don’t know the optimal dosing of these various dietary antioxidants. We also don’t know the added benefit of antioxidant supplementation in the era of CFTR modulator therapy, emerging treatments that get at the basic protein defect in cystic fibrosis.

MedicalResearch.com: Is there anything else you would like to add?

Response: This clinical trial, funded by a grant from the Cystic Fibrosis Foundation, was an investigator-initiated study led by Scott D. Sagel, MD, PhD, a Professor of Pediatrics at Children’s Hospital Colorado and Director of the University of Colorado Cystic Fibrosis Center. It was not an industry initiated or funded trial. Callion Pharma manufactured the antioxidant-enriched and control multivitamins and provided them at no charge for this study.

MedicalResearch.com: Thank you for your contribution to the MedicalResearch.com community.

Citation:
Effects of an Antioxidant-enriched Multivitamin in Cystic Fibrosis: Randomized, Controlled, Multicenter Trial
Scott D Sagel , Umer Khan , Raksha Jain , Gavin Graff , Cori L Daines , Jordan M Dunitz , Drucy Borowitz , David M Orenstein , Ibrahim Abdulhamid , Julie Noe , John P Clancy , et al
https://doi.org/10.1164/rccm.201801-0105OC PubMed: 29688760
American Journal of Respiratory and Critical Care Medicine

Published Online: April 24, 2018

Note: Content is Not intended as medical advice. Please consult your health care provider regarding your specific medical condition and questions.

Original interview article here. 

Cinnamon Oil Compound Might Block Bacteria Like P. aeruginosa from Forming Biofilms

By: Alice Melao

A natural component found in cinnamon oil, known as cinnamaldehyde or CAD, may be able to prevent Pseudomonas aeruginosa bacteria from spreading in an organism and inhibit their ability to form antibiotic-resistant biofilms, researchers show.

These findings may support further study into anti-microbial medications that can help control the behavior of these so-called superbugs, or treatment-resistant bacteria, which represent a serious healthcare problem for people with cystic fibrosis and other diseases.

The discovery was reported in “Cinnamaldehyde disrupts biofilm formation and swarming motility of Pseudomonas aeruginosa,” published in the journal Microbiology.

“Humans have a long history of using natural products to treat infections, and there is a renewed focus on such antimicrobial compounds,” Sanjida Halim Topa, PhD, a researcher at Swinburne University of Technology in Australia, and lead study author, said in a university news release. “Natural products may offer a promising solution to this problem.”

Cinnamaldehyde, one of the major components of cinnamon oil, is responsible for its characteristic flavor. This compound is known to have antimicrobial activity against many bacteria, including P. aeruginosa; a stomach ulcer-causing bacteria called Helicobacter pylori; and Listeria monocytogenes, which is responsible for the food-borne infection listeriosis.

“We hypothesized that using natural antimicrobials, such as essential oils, might interfere in [drug-resistant] biofilm formation,” Topa said. “Though many previous studies have reported antimicrobial activity of cinnamon essential oil, it is not widely used in the pharmaceutical industry.”

Working with researchers at Nanyang Technological University in Singapore, the team conducted several experiments to evaluate the impact of different concentrations of cinnamaldehyde on P. aeruginosa biofilms.

They found that non-lethal amounts of the essential oil compound could disrupt by 75.6 % antibiotic-resistant, preformed P. aeruginosa biofilms. Cinnamaldehyde was found to prevent the production of a bacterial-signaling protein essential for bacteria communication and biofilm formation. [Biofilms, or microbe communities whose growth is facilitated by the thick and sticky mucus that marks CF, are known to promote antibiotic resistance in P. aeruginosa lung infections.]

In a concentration-dependent manner, cinnamaldehyde also could reduce the motility of the bacteria, preventing them from spreading elsewhere, the scientists reported.

These findings, the researchers wrote, show “CAD can disrupt biofilms and other surface colonization phenotypes through the modulation of intracellular signaling processes.”

They are now investigating the use of cinnamaldehyde embedded-wound dressings as a way to treat skin infections.

Original article here.

Triclosan, often maligned, may have a good side — treating cystic fibrosis infections

By Chris Waters

Maybe you’ve had the experience of wading in a stream and struggling to keep your balance on the slick rocks, or forgetting to brush your teeth in the morning and feeling a slimy coating in your mouth. These are examples of bacterial biofilms that are found anywhere a surface is exposed to bacteria in a moist environment.

Besides leading to falls in streams or creating unhealthy teeth, biofilms can cause large problems when they infect people. Biofilms, multicellular communities of bacteria that can grow on a surface encased in their own self-produced matrix of slime, can block immune cells from engulfing and killing the bacteria or prevent antibodies from binding to their surface.

On top of this, bacteria in a biofilm resist being killed by antibiotics due to the sticky nature of the matrix and activation of inherent resistant mechanisms, such as slow-growing cells or the ability to pump antibiotics out of the cell.

Biofilms are one of the primary growth modes of bacteria, but all antibiotics currently used clinically were developed against free-swimming planktonic bacteria. This is why they do not work well against biofilms.

My laboratory studies how and why bacteria make biofilms, and we develop new therapeutics to target them. Because antibiotic resistance is the most problematic aspect of biofilms during infections, we set out to identify novel molecules that could enhance antibiotic activity against these communities.

We discovered that an antimicrobial that has recently obtained a bad reputation for overuse in many household products could be the secret sauce to kill biofilms.

The hunt for antibiotic superchargers

To find such compounds, we developed an assay to grow plates of 384 tiny biofilms of the bacterium Pseudomonas aeruginosa. We did this to screen for molecules that enhance killing by the antibiotic tobramycin. We chose this bacterium and this antibiotic as our test subjects because they are commonly associated with cystic fibrosis lung infections and treatment.

People with cystic fibrosis (CF) are at particular risk from biofilm-based infections. These infections often become chronic in the lungs of cystic fibrosis patients and are often never cleared, even with aggressive antibiotic therapy.

After we screened 6,080 small molecules in the presence of tobramycin, we found multiple compounds that showed the antibiotic enhancement activity we were searching for. Of particular interest was the antimicrobial triclosan because it has been widely used in household products like toothpaste, soaps and hand sanitizers for decades, indicating that it had potential to be safely used in CF patients. Triclosan has also garnered a bad reputation due to its overuse, and states like Minnesota have banned it from these products. The Food and Drug Administration banned its use from hand soaps in September 2016. This ruling was not based on safety concerns, but rather because the companies that made these products did not demonstrate higher microbial killing when triclosan was added, compared to the base products alone.

Another fact that piqued our interest is that P. aeruginosa is resistant to triclosan. Indeed, treatment with either tobramycin or triclosan alone had very little activity against P. aeruginosa biofilms, but we found that the combination was 100 times more active, killing over 99 percent of the bacteria.

We further studied this combination and found that it worked against P. aeruginosa and other bacterial species that had been isolated from the lungs of CF patients. The combination also significantly enhanced the speed of killing so that at two hours of treatment, virtually all of the biofilm is eradicated.

Our efforts are now focused on pre-clinical development of the tobramycin-triclosan combination. For CF, we envision patients will inhale these antimicrobials as a combination therapy, but it could also be used for other applications such as diabetic non-healing wounds.

Although questions about the safety of triclosan have emerged in the mainstream media, there are actually dozens of studies, including in humans, concluding that it is well tolerated, summarized in this extensive EU report from 2009. My laboratory completely agrees that triclosan has been significantly overused, and it should be reserved to combat life-threatening infections.

The next steps for development are to initiate safety, efficacy and pharmacological studies. And thus far, our own studies indicate that triclosan is well tolerated when directly administered to the lungs. We hope that in the near future we will have enough data to initiate clinical trials with the FDA to test the activity of this combination in people afflicted with biofilm-based infections.

We think our approach of enhancing biofilm activity with the addition of novel compounds will increase the usefulness of currently used antibiotics. Learning about how these compounds work will also shed light on how bacterial biofilms resist antibiotic therapy.

Original article here.

£11 million-a-year US pharmaceutical boss is accused of trying to ‘blackmail’ Theresa May into buying cystic fibrosis drug

By Stephen Adams and Glen Owen

The boss of a US pharmaceutical giant was last night accused of trying to ‘blackmail’ Theresa May into buying a groundbreaking drug at an eye-watering annual cost of £100,000 per patient.

Thousands of people with the deadly lung condition cystic fibrosis (CF) have been pleading with NHS bosses to strike a deal with Vertex over Orkambi, a new treatment that could extend their lives by years.

The talks collapsed acrimoniously ten days ago, after which Vertex boss Dr. Jeff Leiden wrote to the Prime Minister threatening to scale back the firm’s investment in the UK unless NHS England agreed to buy Orkambi on its terms.

In an extraordinary outburst, Dr. Leiden accused Britain of placing ‘a lower value on the life of a CF patient than other countries’ which have purchased Orkambi, and warned that British jobs relied on his benevolence.
The row comes amid growing anger among health chiefs about how the ‘profiteering’ of drugs companies is heaping pressure on the NHS budget.

The starting price for Orkambi negotiations is thought to be £104,000 per patient per year.

Tory MP Bob Stewart said: ‘Drug companies have every right to turn a profit to fund their vital research and development work, but it is completely immoral to overcharge for a life-saving drug. If the CEO is trying to blackmail the Prime Minister that is utterly disgraceful.’

In his letter to Mrs. May, Dr. Leiden, who received £11 million in salary and stock options last year, wrote: ‘Vertex is heavily committed to the UK with its international HQ in London, an R&D site near Oxford and runs many clinical trials in the NHS. Since 2006, Vertex has invested over £1.2 billion in the UK and now employs 250 people, of whom over 110 are scientists.’

But he added: ‘We are questioning this ecosystem as [the UK] is unable to value life-changing medicines for the patients that need them.’ Without major changes to how new drugs were assessed, he pointedly warned that ‘any future biotech investment in the UK is at significant risk’.

In 2014, Dr. Leiden, who owns a string of waterfront homes in Massachusetts and Florida, faced a shareholder revolt over his ‘exorbitant’ pay package of almost £35 million. Orkambi is the only current therapy that slows the inevitable progression of CF. It could benefit up to half of the 10,500 Britons with the condition.

CF causes lungs to produce too much mucus, reducing their effectiveness. Around half of sufferers die before the age of 47, but Orkambi has been shown to boost lung function by 42 percent.

Catherine Upstone, from Brackley, Northamptonshire, whose daughter Cerys, 14, is one of those who could benefit from Orkambi, said: ‘The two sides need to get back around the table.’

But NHS England boss Simon Stevens recently told MPs that Vertex must first drop its price.

‘Right now, the company is a very long way from acting responsibly,’ he said. ‘The implication of the kinds of prices that are being talked about would either be to deny patients those drugs or to rip off British taxpayers, and neither of those situations is acceptable.’

Vertex’s chief commercial officer Stuart Arbuckle said the firm had made NHS England ‘the best offer in the world, which provides all eligible patients immediate access to our current and future medicines. However, the NHS wants our existing medicines and those coming down the line in the next year for no extra money – this is essentially asking for our medicines for free.’

NHS England said: ‘If Vertex believes they are offering a reasonable deal, they should waive their confidentiality clause and let patients and taxpayers judge whether it is fair.’

Original article here.