Triclosan, often maligned, may have a good side — treating cystic fibrosis infections

By Chris Waters

Maybe you’ve had the experience of wading in a stream and struggling to keep your balance on the slick rocks, or forgetting to brush your teeth in the morning and feeling a slimy coating in your mouth. These are examples of bacterial biofilms that are found anywhere a surface is exposed to bacteria in a moist environment.

Besides leading to falls in streams or creating unhealthy teeth, biofilms can cause large problems when they infect people. Biofilms, multicellular communities of bacteria that can grow on a surface encased in their own self-produced matrix of slime, can block immune cells from engulfing and killing the bacteria or prevent antibodies from binding to their surface.

On top of this, bacteria in a biofilm resist being killed by antibiotics due to the sticky nature of the matrix and activation of inherent resistant mechanisms, such as slow-growing cells or the ability to pump antibiotics out of the cell.

Biofilms are one of the primary growth modes of bacteria, but all antibiotics currently used clinically were developed against free-swimming planktonic bacteria. This is why they do not work well against biofilms.

My laboratory studies how and why bacteria make biofilms, and we develop new therapeutics to target them. Because antibiotic resistance is the most problematic aspect of biofilms during infections, we set out to identify novel molecules that could enhance antibiotic activity against these communities.

We discovered that an antimicrobial that has recently obtained a bad reputation for overuse in many household products could be the secret sauce to kill biofilms.

The hunt for antibiotic superchargers

To find such compounds, we developed an assay to grow plates of 384 tiny biofilms of the bacterium Pseudomonas aeruginosa. We did this to screen for molecules that enhance killing by the antibiotic tobramycin. We chose this bacterium and this antibiotic as our test subjects because they are commonly associated with cystic fibrosis lung infections and treatment.

People with cystic fibrosis (CF) are at particular risk from biofilm-based infections. These infections often become chronic in the lungs of cystic fibrosis patients and are often never cleared, even with aggressive antibiotic therapy.

After we screened 6,080 small molecules in the presence of tobramycin, we found multiple compounds that showed the antibiotic enhancement activity we were searching for. Of particular interest was the antimicrobial triclosan because it has been widely used in household products like toothpaste, soaps and hand sanitizers for decades, indicating that it had potential to be safely used in CF patients. Triclosan has also garnered a bad reputation due to its overuse, and states like Minnesota have banned it from these products. The Food and Drug Administration banned its use from hand soaps in September 2016. This ruling was not based on safety concerns, but rather because the companies that made these products did not demonstrate higher microbial killing when triclosan was added, compared to the base products alone.

Another fact that piqued our interest is that P. aeruginosa is resistant to triclosan. Indeed, treatment with either tobramycin or triclosan alone had very little activity against P. aeruginosa biofilms, but we found that the combination was 100 times more active, killing over 99 percent of the bacteria.

We further studied this combination and found that it worked against P. aeruginosa and other bacterial species that had been isolated from the lungs of CF patients. The combination also significantly enhanced the speed of killing so that at two hours of treatment, virtually all of the biofilm is eradicated.

Our efforts are now focused on pre-clinical development of the tobramycin-triclosan combination. For CF, we envision patients will inhale these antimicrobials as a combination therapy, but it could also be used for other applications such as diabetic non-healing wounds.

Although questions about the safety of triclosan have emerged in the mainstream media, there are actually dozens of studies, including in humans, concluding that it is well tolerated, summarized in this extensive EU report from 2009. My laboratory completely agrees that triclosan has been significantly overused, and it should be reserved to combat life-threatening infections.

The next steps for development are to initiate safety, efficacy and pharmacological studies. And thus far, our own studies indicate that triclosan is well tolerated when directly administered to the lungs. We hope that in the near future we will have enough data to initiate clinical trials with the FDA to test the activity of this combination in people afflicted with biofilm-based infections.

We think our approach of enhancing biofilm activity with the addition of novel compounds will increase the usefulness of currently used antibiotics. Learning about how these compounds work will also shed light on how bacterial biofilms resist antibiotic therapy.

Original article here.

Cystic Fibrosis Disease Severity Linked to Immune Overreaction to Fungus, Study Reports

By Ana Pena

Disease severity in cystic fibrosis (CF) may be associated with an overreaction of the immune system to the fungus Aspergillus fumigatus, particularly due to a type of white blood cell called a phagocyte — which ingests and kills invading organisms — a study suggests.

U.K. researchers found that phagocytes from CF patients release higher amounts of harmful reactive oxygen species in response to Aspergillus fumigatus, a common cause of lung infection in these patients.

The study, “Aspergillus-induced superoxide production by cystic fibrosis phagocytes is associated with disease severity,” was published in the journal ERC Open Research.

Recent studies have supported the idea that the widespread environmental fungus Aspergillus fumigatus may play a critical role in CF lung disease.

Up to 58% of CF patients are colonized with this fungus, and an estimated 47.7% of adult patients are affected by either allergic reactions or infection caused by the fungus.

Persistent infections with A. fumigatus are also known to be adversely correlated with lung function and hospitalization in CF patients.

Researchers hypothesized that the anti-fungal defense mechanism in CF patients might be altered and have an impact on the progression of lung disease.

To investigate this hypothesis, the team compared the immune response of phagocytes from CF patients with those of healthy individuals used as controls, and tried to correlate them to clinical metrics of disease severity.

For original article please visit CF News Today.

Toothpaste ingredient may bust up cystic fibrosis biofilms

By Chris Waters and Sarina Gleason

A common antibacterial substance in toothpaste may combat life-threatening diseases such as cystic fibrosis when combined with an with an FDA-approved drug, researchers report.

Researchers have found that when triclosan, a substance that reduces or prevents bacteria from growing, combines with an antibiotic called tobramycin, it kills the cells that protect the CF bacteria, known as Pseudomonas aeruginosa, by up to 99.9 percent.

CF is a common genetic disease with one in every 2,500 to 3,500 people diagnosed with it at an early age. It results in a thick mucus in the lungs, which becomes a magnet for bacteria.

These bacteria are notoriously difficult to kill because a slimy barrier known as a biofilm, which allows the disease to thrive even when treated with antibiotics, protects them.

“The problem that we’re really tackling is finding ways to kill these biofilms,” says Chris Waters, lead author of the study and a microbiology professor at Michigan State University.

According to Waters, there are many common biofilm-related infections that people get, including ear infections and swollen, painful gums caused by gingivitis. But more serious, potentially fatal diseases join the ranks of CF including endocarditis, or inflammation of the heart, as well as infections from artificial hip and pacemaker implants.

Waters and his coauthors grew 6,000 biofilms in petri dishes, added in tobramycin along with many different compounds, to see what worked better at killing the bacteria. Twenty-five potential compounds were effective, but one stood out.

“It’s well known that triclosan, when used by itself, isn’t effective at killing Pseudomonas aeruginosa,” says coauthor Alessandra Hunt, a postdoctoral associate of microbiology and molecular genetics. “But when I saw it listed as a possible compound to use with tobramycin, I was intrigued. We found triclosan was the one that worked every time.”

Triclosan has been used for more than 40 years in soaps, makeup, and other commercial products because of its antibacterial properties. Recently, the FDA ruled to limit its use in soaps and hand sanitizers due to insufficient data on its increased effectiveness and concern about overuse. Clear evidence has shown, though, that its use in toothpaste is safe and highly effective in fighting gingivitis, and it is still approved for use.

“Limiting its use is the right thing to do,” says coauthor Michael Maiden, a graduate student in medicine. “The key is to avoid creating resistance to a substance so when it’s found in numerous products, the chances of that happening increase.”

Tobramycin is currently the most widely used treatment for CF, but it typically doesn’t clear the lungs of infection, Waters says. Patients typically inhale the drug, yet still find themselves chronically infected their whole lives, eventually needing a lung transplant.

“Most transplants aren’t a viable option though for these patients and those who do have a transplant see a 50 percent failure rate within five years,” he says. “The other issue is that tobramycin can be toxic itself.” Known side effects from the drug include kidney toxicity and hearing loss.

“Our triclosan finding gives doctors another potential option and allows them to use significantly less of the tobramycin in treatment, potentially reducing its use by 100 times,” Hunt says.

Within the next year, Waters and his colleagues will begin testing the effectiveness of the combination therapy on mice with hopes of it heading to a human trial soon after since both drugs are already FDA approved.

Just brushing your teeth with toothpaste that has triclosan won’t help to treat lung infections though, Maiden says.

“We’re working to get this potential therapy approved so we can provide a new treatment option for CF patients, as well as treat other biofilm infections that are now untreatable. We think this can save lives,” he says.

The research appears in the journal Antimicrobial Agents and Chemotherapy.

The National Institutes of Health, Cystic Fibrosis Foundation, and Hunt for a Cure in Grand Rapids, Michigan funded the research.

Source: Michigan State University

Defining chronic Pseudomonas aeruginosa infection in cystic fibrosis

By Valerie Waters and Keith Grimwood

Cystic fibrosis (CF) is a genetic, multi-system disease due to mutations in the cystic fibrosis conductance regulator (CFTR) gene, leading to ineffective anion channel activity [1]. The resulting impaired mucociliary clearance permits initial acquisition of Pseudomonas aeruginosa and, if untreated, the establishment of persistent infection in the CF airways. It has long been recognized that chronic infection, often characterized by a mucoid P. aeruginosa phenotype, is associated with more rapid lung function decline and earlier death in individuals with CF [[2], [3], [4]]. Defining chronic P. aeruginosa infection is, therefore, an important step in identifying CF patients most at risk of lung disease progression. Traditionally, the Leed’s criteria has been used to define chronicity (as having >50% of sputum cultures being P. aeruginosa positive in the preceding 12 months), as it is the only clinically validated definition [5]. However, the Leed’s criteria are difficult to implement in young children unable to provide sputum and further limited by the required number of sputum samples and follow-up time [6].

In this issue of the Journal, studies by Heltshe et al. and Boutin et al. aim to re-define what chronic P. aeruginosa infection means in CF. In a retrospective cohort study using data from the US CF Foundation Patient Registry, Heltshe et al. followed close to 6000 early-diagnosed CF children for approximately 6 years [7]. Two-thirds acquired P. aeruginosa infection and of those, 6% had an initial mucoid phenotype. Furthermore, the majority (87%) of children who developed mucoid infection did so before meeting the definition of chronic infection (at least 3 yearly quarters P. aeruginosa positive in the preceding year). Initial P. aeruginosa infection with a mucoid phenotype has been previously described and is a recognized risk factor for failure of antimicrobial eradication therapy [[8], [9], [10]]. Whether this initial acquisition of a mucoid phenotype represents prior adaptation of P. aeruginosa in the CF host (either undetected or transmitted from a patient with chronic infection) or simply infection with an environmental strain particularly well-suited to the CF airways, is as of yet unknown [11]. It is clear, though, that mucoid P. aeruginosa does have an adaptive advantage in early CF infection as mucoidy was associated with an almost three-fold increased risk of transition to chronic infection in this current study. Despite the presence of this risk factor, however, only 13% of P. aeruginosa infected patients went on to develop chronic infection. Although Heltshe et al. did not provide details as to eradication strategies used in this cohort, this low incidence of persistent infection does speak to the overall effectiveness of current antimicrobial treatment for early P. aeruginosa infection.

Boutin et al. took their investigation a step further by using molecular methods, specifically quantitative polymerase chain reaction (qPCR), to define chronic P. aeruginosa infection [12]. In their study, patients with chronic infection had significantly higher levels of P. aeruginosa as measured by qPCR compared to those with intermittent infection. A single P. aeruginosa qPCR measurement in sputum had a sensitivity of 84% (with a specificity of 85%) in detecting chronic infection using a threshold of 103.4 colony forming units (CFU)/ml. A single sputum PCR measure had the advantage of not requiring 12 months of culture results as per the Leed’s criteria [5]. Furthermore, in their small study sample size, PCR was more discriminatory than mucoidy status in predicting chronicity, not surprisingly, given that alginate production (conferring mucoidy) is only one of several virulence factors contributing to the establishment of persistent P. aeruginosa infection in CF [13]. When used in throat swab samples, qPCR had a considerably lower sensitivity (82%) and specificity (56%) in detecting chronic infection, likely due in part to the lower bacterial burden observed in this specimen, compared to sputum. The low specificity of PCR in this setting (positive PCR, negative culture) may reflect the fact that a molecular signal may precede culture positivity. Early detection of P. aeruginosa infection, before culture conversion, in CF patients was originally suggested decades ago using serologic and, more recently, molecular methods [[14], [15], [16]]. Serology, however, has proven disappointing at identifying early P. aeruginosa infection [17]. Nevertheless, early detection may still be possible using highly-sensitive PCR techniques for identifying lower airway P. aeruginosa infection in a young, non-expectorating child. In the study by Boutin et al., P. aeruginosa detection in throat swabs by PCR alone was linked to a positive culture in sputum in three-quarters of cases. Previous studies comparing oropharyngeal cultures to bronchoalveolar lavage (BAL) cultures in children with CF demonstrated that oropharyngeal cultures had a positive predictive value of only 44%, but a negative predictive value of 95% in diagnosing lower airway P. aeruginosa infection [18]. Performing P. aeruginosa qPCR on culture negative throat swabs may further improve the diagnosis of lower airway infection in young children with CF who are unable to produce sputum, but this approach will still need to be validated by comparative studies employing BAL fluid samples. Unfortunately, using confirmatory induced sputum samples as suggested by Boutin et al., may produce unreliable results as these specimens are poor predictors of lower airway pathogens cultured from BAL specimens in young children with CF [19]. Finally, it is yet to be determined whether an earlier diagnosis of P. aeruginosa infection leads to improved eradication success rates and superior clinical outcomes.

In summary, the recent studies by Heltshe et al. and Boutin et al. further our understanding of how chronic P. aeruginosa infection develops in CF and how to better recognize it [7,12]. Ultimately, prevention of chronic P. aeruginosa infection and its deleterious effects on lung function and survival is the goal.

Original article in Journal of Cystic Fibrosis here.

I’m on the transplant list, now what?

In Jerry Cahill’s latest edition of The Path Forward with Cystic Fibrosis, Dr. Selim Arcasoy from Columbia University Medical Center discusses what happens once a patient is on the transplant list.
The first three major steps are:
  1. Create a strict exercise program with the hospital rehab center and integrate it into the patient’s schedule.
  2. Meet with a nutritionist in order to maintain proper weight.
  3. Educate! Meet with the care team in order to understand the entire process – both pre and post transplant.
The transplant process is a long one – and thoroughly detailed – in order to increase the chances of success. Tune in to learn more from Dr. Arcasoy.

This video podcast was made possible through an unrestricted educational grant from Columbia University Medial Center and the Lung Transplant Project.

Ground-Breaking Procedure. A major step for science, medicine, the human condition

by Mary Bulman; Independent UK

“Woman spends record six days without lungs thanks to ground-breaking procedure”

Yes you’ve read that correctly.
Yes, it reads six days.

A true miracle! Definitely an understatement.

Though it’s been over a year since this procedure was carried out, it’s one that I believe cannot be shared enough. A huge step for medicine and science- but perhaps a larger one for the human condition and the willingness to live and fight.

“I still don’t believe it happened. It seems very surreal.” says patient Melissa Benoit.
And that’s because it is, Ms. Benoit.

After coming down with the flu the last year 2016, Ms. Benoit was taken from her home in Burlington, Canada to the ICU in a nearby hospital located right outside of Toronto, Canada.  Doctor’s made the spilt decision to go through with a first time procedure in order to save her life. After becoming resistant to most antibiotics, bacteria began to move throughout her body, eventually causing her to lapse into septic shock. One by one her organs started shutting down, due to the decline of her blood pressure.

“Although it had never been carried out before, doctors decided to remove her lungs entirely.”

“What helped us is the fact that we knew it was a matter of hours before she would die,” said Dr Shaf Keshavjee, one of three surgeons who operated on her. “That gave us the courage to say — if we’re ever going to save this woman, we’re going to do it now.”

To learn more about Ms. Benoit and the new breed of surgery that was carried out please continue onto the article below:
https://www.independent.co.uk/news/world/americas/woman-six-days-without-lungs-waiting-list-donor-organ-burlington-ontario-melissa-benoit-world-first-a7547936.html

Study Links CF Patients’ Airway Bacteria with Disease Outcomes

By: Diogo Pinto

Researchers have linked variations in the mix of microorganisms in cystic fibrosis patients’ airways to their disease outcomes.

The findings in the journal PLOS One were in an article titled “Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis.

CF patients typically have particular strains of bacterial and fungus in their airways. The usual bacteria suspects include PseudomonasAchromobacterBurkholderiaHaemophilusStaphylococcus, and Stenotrophomonas.

Other bacteria and fungi also inhabit CF patients’ airways, however. These include anaerobic species that do not need oxygen to grow and spread.

Not only do the microbial communities in CF patients’ airways vary by type of microorganism, but also in the relative abundance of each species.

Researchers decide to see if the prevalence and relative abundance of typical CF pathogens and anaerobic microorganisms play a role in the severity of patients’ disease and their lung function.

They analyzed 631 sputum samples collected over 10 years from 111 patients.

The team classified the stage of patients’ disease on the basis of their lung function scores. The yardstick they used was forced expiratory volume in one second, or FEV1. They considered an early stage of the disease to be an FEV1 score higher than 70, an intermediate stage a score of 40 to 70, and an advanced stage a score lower than 40.

Researchers classified disease aggressiveness — mild, moderate or severe — on the basis of change in FEV1 relative to age.

They discovered a link between variations in the prevalance of the six typical CF pathogens, plus nine anaerobic species, and changes in a patient’s disease stage and lung function.

To continue reading, click here. 

Antibiotic resistance evolution of Pseudomonas aeruginosain cystic fibrosis patients

By Francesca Lucca, Margherita Guarnieri, Mirco Ros, Giovanni Muffato, Roberto Rigoli, and Liviana Da Dalt

Below is a study hoping to define and answer the questions of Pseudomonas aeruginosain, its evolution and the resistance from different antibiotics. The study took place between 2010-2013. Though the study may have some time clauses I believe there are some strong findings for the CF community moving forward.
_________________________________________________________________________________

Introduction

Pseudomonas aeruginosa is the predominant pathogen responsible of chronic colonization of the airways in cystic fibrosis (CF) patients. There are few European data about antibiotic susceptibility evolution of P aeruginosa in CF patients.

Objectives

The aim of this study is to evaluate the evolution of antibiotic resistance in the period 2010‐2013 in CF patients chronically colonized by P aeruginosa and to highlight the characteristics of this evolution in patients younger than 20 years.

Methods

Clinical and microbiological data were extracted from two electronic databases and analyzed. Antibiotic resistance was defined according to European Committee of Antimicrobial Susceptibility Testing for levofloxacin, ciprofloxacin, meropenem, amikacin and ceftazidime. The between‐group comparison was drawn with the Chi‐square test for proportions, with the T‐test for unpaired samples for normally distributed data and with Mann‐Whitney test for non‐normally distributed data. Significancy was defined by P < .05.

Results

Fifty‐seven CF patients, including thirteen subjects aged less than 20 years, were enrolled. P.. aeruginosa antibiotic sensitivity decreased significantly for fluoroquinolones, mainly in patients aged <20 years, while it increased for amikacin and colistin. The analysis of minimum inhibitory concentration confirmed these trends. In pediatric patients treated with more than three antibiotic cycles per year, greater resistance was found, except for amikacin and colistin.

Conclusion

An evolution in P aeruginosa antibiotic resistances is observed in the 4‐year period studied. Responsible and informed use of antibiotics is mandatory in CF.
___________________________________________________________________________________
Read the whole clinical journal here. 

Antibiotic resistance evolution of Pseudomonas aeruginosa in cystic fibrosis patients (2010‐2013) Francesca Lucca,Margherita Guarnieri,Mirco Ros,Giovanna Muffato,Roberto Rigoli,Liviana Da Dalt. First published: 1 April 2018. https://doi.org/10.1111/crj.12787

How to be a Hermit in Flu Season – Top 10 Things to do to Avoid Winter Bugs

By: Beth Sufian

In the past month, many newspapers have reported that large numbers of people in the United States have fallen ill from widespread flu in every state except Hawaii.  People with CF are especially vulnerable to flu and other viruses that pop up in winter.  People spend more time indoors so it is easier for flu and viruses to spread.  I remember one of the first articles I read in CF Roundtable was by Joe Kowalski one of the founders of CF Roundtable.  He wrote about being a hermit during winter and how it reduced his incidence of getting sick.  I thought it was an interesting idea and after 18 years of doing a similar thing in winter, I thought I would share my strategies.

Here is a list of the top 10 things I do to try and reduce the likelihood of getting sick in winter. I know some people are already anxious about getting sick and this blog post is not meant to increase anxiety.  My hope is that one or more of these strategies may help some of you stay healthy during the winter.

Please share any effective strategies you use in the comments section below

1.Take Your Own Pen                                                                                                              On your next trip to the store watch as people take the pen at the checkout and sneeze or cough right on the pen. When you go to the store, doctor’s office or any other public place where you may need to sign something bring your own pen. It is easy to find pens with a stylus cap to use in stores that use a screen for signatures.

2. Take a Small Bottle of Hand Gel and a N-95 Mask                                                    If you find you have touched a surface that has been used by many like a door handle then make sure you have a bottle of hand sanitizer so that you can clean your hands.  In addition, keep a N-95 mask in your purse or backpack.  If you find yourself in a space with a person or many people who are coughing or sneezing you can quickly put on the mask.  If you feel self-conscious about wearing a mask just remember the last time you were sick and that should put those thoughts to the back of your mind.

3. Wear Gloves                                                                                                                        Wearing gloves can help you avoid germs when out in public.  While it is advised you should not shake hands with people this is a hard habit to break.  Wearing gloves allows you to shake hands and lower the risk of passing germs to yourself.  However, you need to make sure you wash the gloves frequently.

4. Step up your Treatments                                                                                               It is hard to avoid sick people if you work in an office or in a job that exposes you to the public so it is important to make sure you are doing your daily CF treatments.  In a perfect world, everyone with CF would do all the breathing treatments prescribed each day without missing any doses.  In reality, things get in the way.  Most people with CF tell me they normally skip a lot of treatments each week.  During winter it is important to reduce the number of missed treatments.  Medicine cannot work if it stays in the bottle.   People with CF often say “I do not have time to do my treatments”.  I think the opposite, I do not have time to get sick so I must make time to do my treatments.  If you are working in an office or going to school it is hard to avoid people who are sick but taking good care of yourself can reduce the chance of catching a winter bug.  Also, make sure you go for quarterly CF Care Center visits so that your CF Care team can monitor your health.

To make treatment time more enjoyable find something you really like to do and do it during treatment time.  If possible make that the main time you do the activity.  For example, if you like watching movies or playing video games make treatment time the time you watch movies or play games.  It takes discipline but can really help decrease missed treatments. Listening to music while doing treatments also helps to reduce the noise of the machines and can make treatment time relaxing.  Some people meditate while doing treatments and report it has a calming effect.

5. Avoid Crowds/ Avoid Sick Visitors                                                                             In the late 1990’s I was on and off IV’s many times due to illness.  I realized that often I finished a round of IV’s and would then go to a party or a big meeting and would be sick within 3 days.  When I started restricting my contact with sick people during winter and beyond my own incidence of illness decreased.  My close friends know they should cancel a lunch date with me if they think they may be sick or someone in their house is sick.  I still go out to lunch with friends but in winter I avoid big gatherings. For example, if my daughter’s school is having a meeting of parents I make sure I sit toward the front or back (depending on the room) on the side and not in the middle of the group.  But if I know the meeting will be in a small room with the potential of having a lot of people in attendance I send my husband to the meeting and stay home.

6. Exercise at Home                                                                                                           For me, going to a public gym or exercise class during winter makes me nervous.  I used to attend a yoga class that I enjoyed.  During the winter months half the class was sneezing and coughing and I decided that was not a good place for me to be exercising.  The same thing happened at a local gym.  Now I use yoga videos and step up the number of times I walk my dog.  I know in some places it is too cold to walk outside.  If you have to go to an indoor gym try to go at an off time.

7. Shop at Off Times                                                                                                      Once winter starts I become very disciplined about when I shop.  I love a certain grocery store in Houston that has beautiful food but it can be mobbed on the weekend and at lunchtime.  The other day I drove to the grocery store at 11 am but saw the parking lot was full.  I was tempted to just “run in” because I had driven there and needed a few things.  But I turned the car around and headed home.  I find that when the store first opens at 8 am there are very few shoppers so that is the best time for me to go.  If you work or go to school and this is not possible see if someone else can get things for you.   Some stores now have a way for you to order things online and then pick up the bagged items at the store. This fairly new service can be very helpful to people with CF.

8. No Airplane Travel                                                                                                         In the late 1990’s I was still traveling in winter. I would finish a course of IV’s and feel good and then a week later I would board an airplane and head to a work meeting, wedding or family event.  Within 3 days of returning from the trip, I would be sick and back on IV’s.  After 3 winters of this cycle of IV’s, travel and getting sick again I realized there was a direct correlation between my travel and getting sick.

My solution was to impose winter travel restrictions.  I do not fly on an airplane in January and February unless I need to travel for medical care.  This year I think I will extend my rule to mid- March given the widespread flu activity and what looks like extended cold weather in many places.  I have been restricting airplane travel since 2000 and have seen great results in terms of my health.  Also by having an absolute rule, no one feels slighted if I miss their wedding or event.  I do wear an N-95 mask when I fly on a plane in other months.  However, I found when I traveled in winter when I got to my destination (especially if the place had cold weather) I still got sick because I came into contact with a lot of sick people.

I travel a lot the rest of the year so having 2 months at home is a treat.  I just cleaned out 28 years of boxes that have accumulated in my attic.  February my goal is to clean and organize my closets.  In Houston where so many lost everything in Hurricane Harvey, it feels good to send things I do not use to those who need help.

9. Rest                                                                                                                                         I have come to the conclusion based on conversions with thousands of people with CF that people with CF do not enough sleep.  For those who work or go to school, there is always a shortage of time as a person tries to do breathing treatments in the morning and night and fit in work and school (or the other way around).  Those who are not attending work or school may find they have interrupted sleep due to coughing, low blood sugar or other health issues which results in exhaustion in the morning.  A decline in health also brings with it the need for more sleep. Sleep is extremely important and helps your body fight off viruses, the flu, and other bugs.  While it seems rare for most CF physicians to talk about the need for sleep it is very important and can really improve health and reduce the chance of getting sick.

10. Stay Connected                                                                                                               In Joe Kowalski’s day there was no Internet, Facebook or Twitter.  Talking on the phone was the way he stayed connected to friends and family during winter.  I make plans to speak to friends or to meet them for coffee or lunch when they feel well.  I also like to plan fun things to do in the spring and summer while I am in my winter cocoon.  I may have to pass up going to a party or an event in winter but I have found the reward of not being sick is worth it.  I look forward to reading of the strategies CF Roundtable Readers use to avoid winter bugs.

 

 

 

New Drug Application Submitted for Treatment of P. aeruginosa

https://bronchiectasisnewstoday.com/2017/07/28/non-cystic-fibrosis-bronchiectasis-candidate-therpay-nda-submitted-for-linhaliq-for-p-aeruginosa-infection/

New Drug Application Submitted for Linhaliq as Treatment of Pseudomonas Aeruginosa Infection in NCFBE Patients

The pharmaceutical company Aradigm has submitted a new drug application (NDA) to the U.S. Food and Drug Administration (FDA) for Linhaliq Continue reading New Drug Application Submitted for Treatment of P. aeruginosa