Positive Data from the CARE CF 1 Clinical Study of Oral Lynovex in Cystic Fibrosis Exacerbations

NovaBiotics Ltd (“NovaBiotics”) announces that its oral therapy for cystic fibrosis (CF), Lynovex®, has met the study objectives of the CARE CF 1 clinical trial.

CARE CF 1 assessed the effects of two weeks of Lynovex treatment as an adjunct to standard of care therapy (SOCT) in CF, compared to placebo plus SOCT. This trial was designed to determine whether the inclusion of Lynovex capsules alongside SOCT lessened the clinical impact of exacerbations in adults with CF, as measured by symptom severity and levels of bacteria and inflammatory mediators in sputum and blood.  CARE CF 1 was a 6-arm study with the primary objectives of determining the optimal dose and regimen of Lynovex in patients with exacerbations of CF-associated lung disease and to further evaluate the safety and tolerability of Lynovex in exacerbating CF patients.  Continue reading Positive Data from the CARE CF 1 Clinical Study of Oral Lynovex in Cystic Fibrosis Exacerbations

Omega-3 Compound Reduces Inflammation in Cystic Fibrosis Patients in New Pilot Study

By Jennifer Prince

A marine omega-3 compound comprising a docosahexaenoic acid (DHA) sn1-monoacylglyceride (MAG-DHA) may act as an anti-inflammatory for subjects with cystic fibrosis, according to a new pilot study1 published in the journal Marine Drugs. In the study, MaxSimil (Neptune Wellness Solutions; Laval, QC, Canada) increased omega-3 red blood cell levels, helped moderate the ratio of arachidonic acid (AA) to docosahexaenoic acid, and reduced key inflammatory biomarkers in subjects with cystic fibrosis. Continue reading Omega-3 Compound Reduces Inflammation in Cystic Fibrosis Patients in New Pilot Study

Vertex Pharmaceuticals opens expanded San Diego research center with focus on cystic fibrosis

By Bradley J. Fikes

Vertex Pharmaceuticals opened its new San Diego research center Monday, starting a new chapter in a decades-long quest to not only treat but cure cystic fibrosis.

In 18 years, three drugs for the lung-ravaging disease have emerged from Vertex’s San Diego center and more are in the pipeline.

The first, Kalydeco, was approved in 2012. It is the first drug that treats the underlying cause of the disease. The second, Orkambi, was approved three years later. And the third, Symdeko, was approved in February.

These drugs can benefit about half of all patients with the incurable disease. In the next several years, Boston-based Vertex hopes its drugs can help nearly all patients live longer, healthier lives.

Cystic fibrosis is caused by a genetic defect that allows a buildup of thick mucus in the lungs, and other internal organs. This mucus clogs airways and promotes the growth of bacteria. The average lifespan of patients is 37 years, up from 20 years in 1980. Treatments include antibiotics to fight lung infections and mucus-thinning drugs.

The new 170,000 square-foot building on Torrey Pines Mesa more than doubles the company’s space. The center includes cell culturing equipment to grow lung cells from patients, to be used for drug screening. A 4,000 square-foot incubator suite will serve outside collaborators.

Asides from cystic fibrosis, the staff will work on other serious diseases.

Among the speakers Monday morning was a veteran in the fight against cystic fibrosis: Jennifer Ferguson, who has two children with the disease, Ashton and Lola. Both her children are taking Vertex drugs, and both were present with her at the event.

With these drugs and the promise of better therapies ahead, she says Ashton and Lola have a good chance of growing up and leading their own lives. She urged all Vertex employees to think of themselves as part of a team to cure the disease.

Ferguson, of San Diego, found out about the work from the Cystic Fibrosis Foundation. The foundation had invested $30 million in startup Aurora Biosciences to find therapies.

In 2001, Vertex purchased Aurora for $592 million in stock, the same year Ashton was diagnosed. The research went on under Vertex, and Ferguson became quite familiar with the research team.

“The Cystic Fibrosis Foundation asked me to come speak, to show them what it’s like to have a little child with CF,” she said. “So I came here about 17 years ago with him as a 6-month-old.”

At that time, many cystic fibrosis patients never reached adulthood.

“I had a hard time keeping it together,” Ferguson told the audience of that long-ago visit.

“But I looked in the staff’s faces — and some of you are still here — and I thought, I’m going to put my faith and trust in your hands, in your brains. And I was able to let go of my worry, because you were on the case.”

Ferguson started visiting every few years to check on what progress was being made, first with Ashton, and later including Lola. She also raises money for the Cystic Fibrosis Foundation.

Both her children have shown improvement since starting the Vertex drugs, Ferguson said. But they still need to go through a daily regimen of clearing out their lungs.

From medications, the research frontier has advanced to investigations into a cure. That means fixing the genetic defect, which can come in several variations, inside living patients.

That cure might come from the hot new gene editing technology called CRISR. In 2015, Vertex allied with startup CRISPR Therapeutics to develop curative therapies.

This post was originally published on The San Diego Union-Tribune

Jerry Cahill’s CF Podcast: Stem Cell Research with Dr. Hans-Willem Snoeck

In this feature of The Path Forward with CF series, Dr. Hans-Willem Snoeck, Professor of Medicine (Microbiology and Immunology) at CUMC, sits down to discuss stem cell research as it relates to CF.

Because lung cells regenerate and repair themselves regularly, researchers believe that – some day – stem cell technology could be a one-time therapy to cure cystic fibrosis. Research is ongoing, but in the meantime, scientists can currently use human pluripotent stem cells to create lung organoids (tiny, 3-D structures that mimic features of a full-sized lung), introduce various mutations, and apply technologies to learn more about those mutations’ characteristics.

This video was originally published on JerryCahill.com

Vertex Employees Donate $1M to CF and Other Communities via Matching Gift Program

By Carolina Henriques

Vertex Pharmaceuticals employees have raised more million $1 million  using  the Vertex Foundation‘s matching gift program in a show of commitment to causes that include the cystic fibrosis (CF) community, a company press release states.

The dollar-for-dollar matching gift program is being run through the nonprofit Vertex Foundation, established by the company in November 2017 as part of it’s charitable giving goal of donating $500 million to qualified nonprofits and other causes worldwide over 10 years.

To date, more than 500 Vertex employees have used the program to support 753 charities around the globe working to advance work in areas that include healthcare, human services, education, and disaster relief.

Vertex’s charitable commitment has four primary goals: supporting CF patients and caregivers worldwide, including enabling access to Vertex’s medicines; helping underserved students and young women with STEAM (science, technology, engineering, arts and math) education; supporting young doctors and scientists; and strengthening and fostering innovation in local communities through health and wellness programs.

“Giving back is in our DNA at Vertex, and our employees have a long history of going the extra mile to improve the lives of patients, students and their neighbors,” Jeffrey Leiden, president, chairman and chief executive officer of Vertex, said in the release. “I’m proud that The Vertex Foundation is able to help extend the impact of our employees’ giving and look forward to seeing the reach of these investments in the causes they care about most.”

Also as part of its 10-year commitment, Vertex awarded $400,000 in scholarships to eligible CF patients and their family members in May as part of its second “All in for CF” scholarship program. In total, 80 scholarships worth $5,000 each were awarded for the upcoming academic year.

Vertex, which specializes in cystic fibrosis, has three approved CF therapies: Kalydeco (ivacaftor), Orkambi (lumacaftor/ivacaftor), and Symdeko (tezacaftor/ivacaftor).

The company is also testing potential triple combination treatments for CF.

For the rest of this article, click here.

Toothpaste ingredient may bust up cystic fibrosis biofilms

By Chris Waters and Sarina Gleason

A common antibacterial substance in toothpaste may combat life-threatening diseases such as cystic fibrosis when combined with an with an FDA-approved drug, researchers report.

Researchers have found that when triclosan, a substance that reduces or prevents bacteria from growing, combines with an antibiotic called tobramycin, it kills the cells that protect the CF bacteria, known as Pseudomonas aeruginosa, by up to 99.9 percent.

CF is a common genetic disease with one in every 2,500 to 3,500 people diagnosed with it at an early age. It results in a thick mucus in the lungs, which becomes a magnet for bacteria.

These bacteria are notoriously difficult to kill because a slimy barrier known as a biofilm, which allows the disease to thrive even when treated with antibiotics, protects them.

“The problem that we’re really tackling is finding ways to kill these biofilms,” says Chris Waters, lead author of the study and a microbiology professor at Michigan State University.

According to Waters, there are many common biofilm-related infections that people get, including ear infections and swollen, painful gums caused by gingivitis. But more serious, potentially fatal diseases join the ranks of CF including endocarditis, or inflammation of the heart, as well as infections from artificial hip and pacemaker implants.

Waters and his coauthors grew 6,000 biofilms in petri dishes, added in tobramycin along with many different compounds, to see what worked better at killing the bacteria. Twenty-five potential compounds were effective, but one stood out.

“It’s well known that triclosan, when used by itself, isn’t effective at killing Pseudomonas aeruginosa,” says coauthor Alessandra Hunt, a postdoctoral associate of microbiology and molecular genetics. “But when I saw it listed as a possible compound to use with tobramycin, I was intrigued. We found triclosan was the one that worked every time.”

Triclosan has been used for more than 40 years in soaps, makeup, and other commercial products because of its antibacterial properties. Recently, the FDA ruled to limit its use in soaps and hand sanitizers due to insufficient data on its increased effectiveness and concern about overuse. Clear evidence has shown, though, that its use in toothpaste is safe and highly effective in fighting gingivitis, and it is still approved for use.

“Limiting its use is the right thing to do,” says coauthor Michael Maiden, a graduate student in medicine. “The key is to avoid creating resistance to a substance so when it’s found in numerous products, the chances of that happening increase.”

Tobramycin is currently the most widely used treatment for CF, but it typically doesn’t clear the lungs of infection, Waters says. Patients typically inhale the drug, yet still find themselves chronically infected their whole lives, eventually needing a lung transplant.

“Most transplants aren’t a viable option though for these patients and those who do have a transplant see a 50 percent failure rate within five years,” he says. “The other issue is that tobramycin can be toxic itself.” Known side effects from the drug include kidney toxicity and hearing loss.

“Our triclosan finding gives doctors another potential option and allows them to use significantly less of the tobramycin in treatment, potentially reducing its use by 100 times,” Hunt says.

Within the next year, Waters and his colleagues will begin testing the effectiveness of the combination therapy on mice with hopes of it heading to a human trial soon after since both drugs are already FDA approved.

Just brushing your teeth with toothpaste that has triclosan won’t help to treat lung infections though, Maiden says.

“We’re working to get this potential therapy approved so we can provide a new treatment option for CF patients, as well as treat other biofilm infections that are now untreatable. We think this can save lives,” he says.

The research appears in the journal Antimicrobial Agents and Chemotherapy.

The National Institutes of Health, Cystic Fibrosis Foundation, and Hunt for a Cure in Grand Rapids, Michigan funded the research.

Source: Michigan State University

CF Foundation ‘Venture Philanthropy’ Model Crucial to CF Breakthroughs

By Larry Luxner

When the Cystic Fibrosis Foundation (CFF) was established in 1955, most people with cystic fibrosis (CF) didn’t make it to their sixth birthday. Today, the average life expectancy of a CF patient is 47 years.

To date, the U.S. Food and Drug Administration has approved 12 CF therapies. Three of them are CFTR modulators that treat the basic disease-causing defect, benefiting 60 percent of all patients, and more therapies are on the way.

Preston W. Campbell III, the CFF’s president and CEO, directly attributes this dramatic improvement to the foundation’s philosophy of “venture philanthropy.”

“We are now in Phase 3 CFTR trials that, if successful, will mean that as early as next year, more than 90 percent of all individuals with CF will have a highly effective therapy targeting CF’s basic defect,” he said. “More therapies that treat the complications of CF are in the pipeline than ever before.

“It begs the question: how did all of this happen?”

Campbell answered that during his March 26 presentation, “Patient advocates taking a real stand in drug development: How the CFF worked with biotech and pharma to find a cure,” at the 2018 World Orphan Drug Congress USA in Oxon Hill, Maryland.

Back in 1960, the Bethesda, Maryland-based foundation broke ground by establishing a Care Center Network to provide multidisciplinary care. Within five more years, it had formed a patient registry.

With only $400,000 in the bank, it would also commit $11 million to research, Campbell said. “Five years later, in 1985, the basic CF defect was identified, and in 1989, the CFTR gene was discovered. That opened the floodgates,” he added.

Campbell’s predecessor, Robert J. Beall, created the Therapeutics Development Program — now called its Venture Philanthropy Model — in 1998 to entice industry to focus on CF, and specifically on CFTR as a target. Its three components were financial assistance, research tools and scientific advice, and a clinical trials network.

“We would lower the risk for industry to come into the CF space. We also made our research tools and scientific advice freely available, and we also embedded the best scientists in the world in these industry programs,” said Campbell, who took over from Beall as head of the CFF in January 2016. “Finally, in order to make sure clinical trials were safely and efficiently done, we created a clinical trials network that originally had seven centers and now has 89.”

In the beginning, CFF’s investments were typically in the $1.5 million range. Ultimately, the foundation invested more than $100 million in Aurora and its successor, Vertex Pharmaceuticals, whose headquarters are in Boston.

To date, the FDA has approved three Vertex CFTR modulators: Kalydeco (ivacaftor) for patients with the G551D mutation in the CFTR gene (2012); Orkambi (lumacaftor/ivacaftor)for patients who are homozygous for F508del, the most common mutation in the CFTR gene (2015); and Symdeko (tezacaftor/ivacaftor) for homozygous F508del patients as well as others (2018).

“Payments are milestone-based, so we pay for success,” Campbell said. “A scientific advisory committee determines if milestones are met and if the project should continue. Successful programs offer a return on our investment, so if the program is foundering, we shake hands and walk away.”

To continue to full article, please click here.

FDA approves Proteostasis’s triple combination program for CF

Singapore — Proteostasis Therapeutics, a clinical stage biopharmaceutical company dedicated to the discovery and development of ground-breaking therapies to treat cystic fibrosis (CF) and other diseases caused by dysfunctional protein processing, announced that the U.S. Food and Drug Administration (FDA) has granted Fast Track Designation for the Company’s triple combination program for the treatment of cystic fibrosis. The Company’s proprietary triple combination includes a novel cystic fibrosis transmembrane conductance regulator (CFTR) amplifier, third generation corrector and potentiator, known as PTI-428, PTI-801 and PTI-808, respectively. The Company announced in January that the protocol for its triple combination clinical study, which the Company plans to initiate in the current quarter, has received endorsement and a high strategic fit score from the Therapeutics Development Network (TDN) and the Clinical Trial Network (CTN), the drug development arms of the Cystic Fibrosis Foundation (CFF) and the European CF Society (ECFS), respectively.

“Fast Track designation represents another positive step for the development of our triple combination therapy and underscores the serious unmet need that remains for the vast majority of CF patients,” said Meenu Chhabra, president and chief executive officer of Proteostasis Therapeutics.

The FDA’s Fast Track program is designed to facilitate the development and expedite the review of new drugs that are intended to treat serious or life-threatening conditions and that demonstrate the potential to address unmet medical needs. An investigational drug that receives Fast Track program designation is eligible for more frequent communications between the FDA and the company relating to the development plan and clinical trial design and may be eligible for priority review if certain criteria are met.

To read original article click here.

A Dutch Company on the Quest Against Cystic Fibrosis

An interview by:  Clara Rodríguez Fernández

Daniel de Boer founded ProQR in 2012 following a strong determination to improve the lives of people with cystic fibrosis. We started ProQR Therapeutics for a very personal reason,” he told me. “Eight years ago, my son was born, and diagnosed with cystic fibrosis. At that time, I was a serial entrepreneur in IT. I decided to make a career switch and start a company to develop drugs for cystic fibrosis, but then also for other genetic diseases.”

One would think that a person without a background in biotech might have it difficult to succeed, but de Boer is not the only to have so far successfully undertaken this endeavor. Over in France Karen Aiach built Lysogene to treat her daughter’s rare genetic disorder, while in the US the story of John Crawley and his company Amicus Therapeutics, founded to help his two children’s diagnosis, went so far as to inspire a movie. The determination and motivation of these parents seem to overdrive any challenges they might have faced because of their limited experience.

De Boer set out to create a business plan for his new company and found out that there was already quite a lot of activity, especially in approaches using small molecules or gene therapy.“We decided that we really wanted to add something new to the space, and take a completely novel approach.”

So he started looking for a new technology, and he found it. “Around that time, I met for the first time with some people in biotech, including the CEO at Alnylam, John Maraganore, and we talked about how they used RNA approaches for genetic diseases,” says de Boer.

Technologies targeting RNA are quite new compared to those that target DNA such as gene therapy. But RNA-based treatments have started to gain traction in the last few years. There are multiple ways that RNA can be used as a therapeutic, but its distinctive advantage over gene therapies and the likes is that it does not permanently change our genetic makeup, making it possible to reverse its effects.

Today, RNA technology is being tested in multiple rare diseases caused by genetic mutations, such as hemophilia, porphyria, or iron overload disorders. I thought, ‘if you can do that for all these other genetic diseases, why not for cystic fibrosis?’” says the Boer. “With that in mind, we started ProQR.”

For the rest of this article, please click here.

Potential Nitric Oxide Treatment for Resistant Bacterial Infections Gets Patent

A possible inhalable treatment for antibiotic-resistant bacterial infections in people with cystic fibrosis due to Pseudomonas aeruginosa now has a U.S. patent and is being readied for a first clinical trial, Novoclem Therapeutics announced.

The patent (No. 9,850,322) was issued to the University of North Carolina (UNC) at Chapel Hill where the potential therapy, BIOC51, was discovered, and covers a technology known as water-soluble polyglucosamine compositions that release nitric oxideContinue reading Potential Nitric Oxide Treatment for Resistant Bacterial Infections Gets Patent