Potential Therapy for Infections in CF Gets Patent

AB569Arch Biopartners’ treatment candidate for bacterial infections in patients with cystic fibrosis, chronic obstructive pulmonary disease (COPD), and other respiratory conditions, has received a U.S. patent.

The U.S. Patent and Trademark Office issued patent 9,925,206 to the University of Cincinnati, which granted Arch Biopartners an exclusive commercial license on all patents related to AB569. The inventor is Daniel Hassett, PhD, a principal scientist at Arch and professor at the University of Cincinnati College Of Medicine.

“This patent issuance, which protects the composition of AB569, gives Arch a stronger commercial position to pursue treating not just CF patients, but also the millions of other patients that have chronic antibiotic resistant lung infections including those with COPD,” Richard Muruve, CEO of Arch, said in a press release. “It also opens the door for Arch to develop treatments for many other indications where antibiotic resistance is a problem, such as urinary tract infections and wound care.”

Bacterial infections in the lungs are a serious problem in patients with CF, COPD, or ventilator-associated pneumonia. Cystic fibrosis patients are susceptible to bacterial respiratory infections as a result of abnormal mucus production in the lungs and airways.

In particular, the bacterium Pseudomonas aeruginosa (P. aeruginosa) affects most adult CF patients and 40 percent of CF children ages 6 to 10. The mucoid form of P. aeruginosa is highly resistant to conventional antibiotics and immune-mediated killing. It causes a rapid decline in lung function and a poor overall clinical prognosis.

Antibiotic use in the treatment of CF and COPD patients with chronic bacterial respiratory infections is increasing, which correlates with a higher prevalence of antibiotic-resistant strains.

AB569 is a non-antibiotic therapy made of sodium nitrite and ethylenediaminetetraacetic acid (EDTA), two compounds approved by the U.S. Food and Drug Administration (FDA) for human use. The treatment has a different mechanism of action from antibiotics that may increase effectiveness, Arch believes.

“AB569 has two active ingredients that produce a dramatic and synergistic effect at killing many antibiotic resistant bacteria including Pseudomonas aeruginosa (P. aeruginosa), which commonly causes severe chronic infections in the lungs of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients,” Hassett said. “AB569 has the potential to make a significant medical impact on treating infection where traditional antibiotics fail.”

In preclinical experiments, the therapy showed significant ability to kill several types of Gram-negative and Gram-positive bacteria.

The safety and pharmacokinetics of a single administration of nebulized AB569 are now being evaluated in a Phase 1 clinical trial with up to 25 healthy volunteers at the Cincinnati Veterans Affairs Medical Center (CVAMC). Pharmacokinetics refers to how a drug is absorbed, distributed, metabolized, and expelled by the body. Enrollment of volunteers started in February.

If the Phase 1 study provides positive results, the company plans to start a Phase 2 trial to test the effectiveness of AB569 in the treatment of chronic lung infections caused by P. aeruginosa and other bacterial pathogens in CF and/or COPD patients.

AB569 previously received orphan drug status from the FDA for the treatment of CF patients infected with P. aeruginosa, and orphan medicinal product designation from the European Medicines Agency.

For original article, click here.

Study Links CF Patients’ Airway Bacteria with Disease Outcomes

By: Diogo Pinto

Researchers have linked variations in the mix of microorganisms in cystic fibrosis patients’ airways to their disease outcomes.

The findings in the journal PLOS One were in an article titled “Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis.

CF patients typically have particular strains of bacterial and fungus in their airways. The usual bacteria suspects include PseudomonasAchromobacterBurkholderiaHaemophilusStaphylococcus, and Stenotrophomonas.

Other bacteria and fungi also inhabit CF patients’ airways, however. These include anaerobic species that do not need oxygen to grow and spread.

Not only do the microbial communities in CF patients’ airways vary by type of microorganism, but also in the relative abundance of each species.

Researchers decide to see if the prevalence and relative abundance of typical CF pathogens and anaerobic microorganisms play a role in the severity of patients’ disease and their lung function.

They analyzed 631 sputum samples collected over 10 years from 111 patients.

The team classified the stage of patients’ disease on the basis of their lung function scores. The yardstick they used was forced expiratory volume in one second, or FEV1. They considered an early stage of the disease to be an FEV1 score higher than 70, an intermediate stage a score of 40 to 70, and an advanced stage a score lower than 40.

Researchers classified disease aggressiveness — mild, moderate or severe — on the basis of change in FEV1 relative to age.

They discovered a link between variations in the prevalance of the six typical CF pathogens, plus nine anaerobic species, and changes in a patient’s disease stage and lung function.

To continue reading, click here. 

Potential Nitric Oxide Treatment for Resistant Bacterial Infections Gets Patent

A possible inhalable treatment for antibiotic-resistant bacterial infections in people with cystic fibrosis due to Pseudomonas aeruginosa now has a U.S. patent and is being readied for a first clinical trial, Novoclem Therapeutics announced.

The patent (No. 9,850,322) was issued to the University of North Carolina (UNC) at Chapel Hill where the potential therapy, BIOC51, was discovered, and covers a technology known as water-soluble polyglucosamine compositions that release nitric oxideContinue reading Potential Nitric Oxide Treatment for Resistant Bacterial Infections Gets Patent

Supercharged antibiotics could turn tide against superbugs

An old drug supercharged by University of Queensland researchers has emerged as a new antibiotic that could destroy some of the world’s most dangerous superbugs.

The supercharge technique , led by Dr Mark Blaskovich and Professor Matt Cooper from UQ’s Institute for Molecular Bioscience (IMB), potentially could revitalise other antibiotics. Continue reading Supercharged antibiotics could turn tide against superbugs

A Brief Historical Timeline of CF Research to Date

Cystic fibrosis care has seen such rapid advances that the average CF patient has experienced a dramatic evolution in treatment strategies in their lifetime. Here are some of the biggest milestones that shaped modern-day CF treatments.

Continue reading A Brief Historical Timeline of CF Research to Date

New Inhaled Antibiotic To Treat Respiratory Infections

https://www.europeanpharmaceuticalreview.com/news/67983/polyphor-antibiotic-murepavadin/

Polyphor launches the development of an inhaled antibiotic murepavadin

Polyphor Ltd has announced the development of an inhaled dosage form of its break­through antibiotic Murepavadin. Continue reading New Inhaled Antibiotic To Treat Respiratory Infections

New Pre-Clinical Data for Iclaprim

Motif Bio Presents New Pre-Clinical Data for Iclaprim at IDWeek 2017™

https://globenewswire.com/news-release/2017/10/06/1142163/0/en/Motif-Bio-Presents-New-Pre-Clinical-Data-for-Iclaprim-at-IDWeek-2017.html

1. Pre-Clinical Data Support the Potential Use of Iclaprim in the Treatment of Staphylococcus aureus Pneumonia in Cystic Continue reading New Pre-Clinical Data for Iclaprim

Fighting an old enemy in the battle against cystic fibrosis

http://msutoday.msu.edu/news/2017/fighting-an-old-enemy-in-the-battle-against-cystic-fibrosis/

Published: Aug. 29, 2017

Michael Maiden, a Michigan State University College of Osteopathic Medicine student and doctoral candidate in the Department of Microbiology and Molecular Genetics, was Continue reading Fighting an old enemy in the battle against cystic fibrosis